1
|
Li J, Wang X, Zhang H, Hu X, Peng X, Jiang W, Zhuo L, Peng Y, Zeng G, Wang Z. Fenamates: Forgotten treasure for cancer treatment and prevention: Mechanisms of action, structural modification, and bright future. Med Res Rev 2025; 45:164-213. [PMID: 39171404 DOI: 10.1002/med.22079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Fenamates as classical nonsteroidal anti-inflammatory agents are widely used for relieving pain. Preclinical studies and epidemiological data highlight their chemo-preventive and chemotherapeutic potential for cancer. However, comprehensive reviews of fenamates in cancer are limited. To accelerate the repurposing of fenamates, this review summarizes the results of fenamates alone or in combination with existing chemotherapeutic agents. This paper also explores targets of fenamates in cancer therapy, including COX, AKR family, AR, gap junction, FTO, TEAD, DHODH, TAS2R14, ion channels, and DNA. Besides, this paper discusses other mechanisms, such as regulating Wnt/β-catenin, TGF-β, p38 MAPK, and NF-κB pathway, and the regulation of the expressions of Sp, EGR-1, NAG-1, ATF-3, ErbB2, AR, as well as the modulation of the tumor immune microenvironment. Furthermore, this paper outlined the structural modifications of fenamates, highlighting their potential as promising leads for anticancer drugs.
Collapse
Affiliation(s)
- Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaodong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoling Hu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weifan Jiang
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linsheng Zhuo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yan Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Guo Zeng
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
2
|
Miles KD, Barker CM, Russell KP, Appel BH, Doll CA. Electrical Synapses Mediate Embryonic Hyperactivity in a Zebrafish Model of Fragile X Syndrome. J Neurosci 2024; 44:e2275232024. [PMID: 38969506 PMCID: PMC11293453 DOI: 10.1523/jneurosci.2275-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
Although hyperactivity is associated with a wide variety of neurodevelopmental disorders, the early embryonic origins of locomotion have hindered investigation of pathogenesis of these debilitating behaviors. The earliest motor output in vertebrate animals is generated by clusters of early-born motor neurons (MNs) that occupy distinct regions of the spinal cord, innervating stereotyped muscle groups. Gap junction electrical synapses drive early spontaneous behavior in zebrafish, prior to the emergence of chemical neurotransmitter networks. We use a genetic model of hyperactivity to gain critical insight into the consequences of errors in motor circuit formation and function, finding that Fragile X syndrome model mutant zebrafish are hyperexcitable from the earliest phases of spontaneous behavior, show altered sensitivity to blockade of electrical gap junctions, and have increased expression of the gap junction protein Connexin 34/35. We further show that this hyperexcitable behavior can be rescued by pharmacological inhibition of electrical synapses. We also use functional imaging to examine MN and interneuron (IN) activity in early embryogenesis, finding genetic disruption of electrical gap junctions uncouples activity between mnx1 + MNs and INs. Taken together, our work highlights the importance of electrical synapses in motor development and suggests that the origins of hyperactivity in neurodevelopmental disorders may be established during the initial formation of locomotive circuits.
Collapse
Affiliation(s)
- Kaleb D Miles
- Section of Developmental Biology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| | - Chase M Barker
- Section of Developmental Biology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| | - Kristen P Russell
- Section of Developmental Biology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| | - Bruce H Appel
- Section of Developmental Biology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| | - Caleb A Doll
- Section of Developmental Biology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
3
|
Cao K, Du Y, Bao X, Han M, Su R, Pang J, Liu S, Shi Z, Yan F, Feng S. Glutathione-Bioimprinted Nanoparticles Targeting of N6-methyladenosine FTO Demethylase as a Strategy against Leukemic Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106558. [PMID: 35119204 DOI: 10.1002/smll.202106558] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/04/2022] [Indexed: 06/14/2023]
Abstract
The N6-methyladenosine (m6 A) demethylase FTO plays an oncogenic role in acute myeloid leukemia (AML). Despite the promising recent progress for developing some small-molecule FTO inhibitors, the clinical potential remains limited due to mild biological function, toxic side effects and low sensitivity and/or specificity to leukemic stem cells (LSCs). Herein, FTO inhibitor-loaded GSH-bioimprinted nanocomposites (GNPIPP12MA) are developed that achieves targeting of the FTO/m6 A pathway synergized GSH depletion for enhancing anti-leukemogenesis. GNPIPP12MA can selectively target leukemia blasts, especially LSCs, and induce ferroptosis by disrupting intracellular redox status. In addition, GNPIPP12MA increases global m6 A RNA modification and decreases the transcript levels in LSCs. GNPIPP12MA augments the efficacy of the PD-L1 blockade by increasing the infiltration of cytotoxic T cells for enhanced anti-leukemia immunity. This study offers insights for a GSH-bioimprinted nanoplatform targeting m6 A RNA methylation as a synergistic treatment strategy against cancer stem cells that may translate to clinical applications.
Collapse
Affiliation(s)
- Kunxia Cao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yangyang Du
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Xin Bao
- Department of Thyroid, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, China
| | - Mingda Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Rui Su
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Jiuxia Pang
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
| | - Shujun Liu
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| |
Collapse
|
4
|
Smedowski A, Akhtar S, Liu X, Pietrucha‐Dutczak M, Podracka L, Toropainen E, Alkanaan A, Ruponen M, Urtti A, Varjosalo M, Kaarniranta K, Lewin‐Kowalik J. Electrical synapses interconnecting axons revealed in the optic nerve head - a novel model of gap junctions' involvement in optic nerve function. Acta Ophthalmol 2020; 98:408-417. [PMID: 31602808 PMCID: PMC7318195 DOI: 10.1111/aos.14272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 09/14/2019] [Indexed: 01/14/2023]
Abstract
PURPOSE To characterize newly discovered electrical synapses, formed by connexin (Cx) 36 and 45, between neighbouring axons within the optic nerve head. METHODS Twenty-five Wistar rats were killed by CO2 inhalation. Proximal and distal optic nerve (ON) stumps were collected and processed for immunostainings, electron microscopy (EM) with immunogold labelling, PCR and Western blots (WB). Additional 15 animals were deeply anaesthetized, and flash visual evoked potentials (fVEP) after retrobulbar injection of saline (negative control) or 100 μm meclofenamic acid solution (gap junctions' blocker) were recorded. Human paraffin cross-sections of eyeballs for immunostainings were obtained from the Human Eye Biobank for Research. RESULTS Immunostainings of both rat and human ON revealed the presence of Cx45 and 36 colocalizing with β3-tubulin, but not with glial fibrillary acidic protein (GFAP). In WB, Cx36 content in optic nerve was approximately halved when compared with retina (0.58 ± 0.005 in proximal stump and 0.44 ± 0.02 in distal stump), Cx45 showed higher levels (0.68 ± 0.01 in proximal stump and 0.9 ± 0.07 in distal stump). In immunogold-EM of optic nerve sections, we found electric synapses (formed mostly by Cx45) directly coupling neighbouring axons. In fVEP, blocking of gap junctions with meclofenamic acid resulted in significant prolongation of the latency of P1 wave up to 160% after 30 min (p < 0.001). CONCLUSIONS Optic nerve (ON) axons are equipped with electrical synapses composed of neuronal connexins, especially Cx45, creating direct morphological and functional connections between each other. This finding could have substantial implications for understanding of the pathogenesis of various optic neuropathies and identifies a new potential target for a therapeutic approach.
Collapse
Affiliation(s)
- Adrian Smedowski
- Department of PhysiologySchool of Medicine in KatowiceMedical University of SilesiaKatowicePoland
| | - Saeed Akhtar
- Department of OptometryCollege of Applied Medical SciencesKing Saud UniversityRiyadhKingdom of Saudi Arabia
| | - Xiaonan Liu
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | - Marita Pietrucha‐Dutczak
- Department of PhysiologySchool of Medicine in KatowiceMedical University of SilesiaKatowicePoland
| | - Lucia Podracka
- School of PharmacyUniversity of Eastern FinlandKuopioFinland
| | | | - Aljoharah Alkanaan
- Department of OptometryCollege of Applied Medical SciencesKing Saud UniversityRiyadhKingdom of Saudi Arabia
| | - Marika Ruponen
- School of PharmacyUniversity of Eastern FinlandKuopioFinland
| | - Arto Urtti
- School of PharmacyUniversity of Eastern FinlandKuopioFinland
| | | | - Kai Kaarniranta
- Department of OphthalmologyUniversity of Eastern FinlandKuopioFinland,Department of OphthalmologyKuopio University HospitalKuopioFinland
| | - Joanna Lewin‐Kowalik
- Department of PhysiologySchool of Medicine in KatowiceMedical University of SilesiaKatowicePoland
| |
Collapse
|
5
|
Khan AM, Rampal S, Sood NK. Effect of levofloxacin, pazufloxacin, enrofloxacin, and meloxicam on the immunolocalization of ABCG-2 transporter protein in rabbit retina. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8853-8860. [PMID: 29330817 DOI: 10.1007/s11356-018-1216-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Adenosine triphosphate-binding cassette (ABC) sub-family G member-2 (ABCG-2) is a transporter protein, implicated for multi-drug efflux from tissues. This study evaluated the effect of fluoroquinolones; levofloxacin, pazufloxacin and enrofloxacin, and non-steroidal anti-inflammatory drug, meloxicam; on the immunolocalization of ABCG-2 transporter protein of rabbit retinas. Thirty-two male rabbits were randomly divided in to eight groups. Control group was gavaged, 2% benzyl alcohol in 5% dextrose since these chemicals are excipients of the drug preparations used in the treatment groups of this study. Four groups were exclusively gavaged, levofloxacin hemihydrate (10 mg/kg body weight b.i.d 12 h), pazufloxacin mesylate (10 mg/kg body weight b.i.d 12 h), enrofloxacin (20 mg/kg body weight o.d.), and meloxicam (0.2 mg/kg body weight o.d.), respectively. Three other groups were co-gavaged meloxicam with above fluoroquinolones, respectively. These drugs were administered for 21 days. ABCG-2 immunolocalization was mild in the retinas of control and levofloxacin-alone-treated groups. The immunolocalization intensity was significantly higher in meloxicam-alone-treated group when compared to control and levofloxacin-alone-treated groups. Immunolocalization of this transporter increased in the levofloxacin-meloxicam co-treated group when compared to the levofloxacin-alone-treated group. Highest immunolocalization was observed in the enrofloxacin-meloxicam co-treated group although the immunolocalization of all treatment groups, except the levofloxacin-alone-treated group, was significantly higher than the control and levofloxacin-alone-treated groups.
Collapse
Affiliation(s)
- Adil Mehraj Khan
- Department of Veterinary Pharmacology and Toxicology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India.
- Division of Veterinary Pharmacology and Toxicology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India.
| | - Satyavan Rampal
- Department of Veterinary Pharmacology and Toxicology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India
| | - Naresh Kumar Sood
- Department of Veterinary Pathology, GADVASU, Ludhiana, Punjab, India
| |
Collapse
|
6
|
Vaajanen A, Vapaatalo H. A Single Drop in the Eye - Effects on the Whole Body? Open Ophthalmol J 2017; 11:305-314. [PMID: 29299077 PMCID: PMC5725525 DOI: 10.2174/1874364101711010305] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/12/2017] [Accepted: 10/16/2017] [Indexed: 11/22/2022] Open
Abstract
Introduction: Although the local adverse effects of ophthalmic drugs, including allergic reactions, are well recognized, less is known about the systemic side- effects of eye drops, especially during pregnancy, breast-feeding and early childhood. Ophthalmologists should also be aware of unusual, in some cases even life-threatening, effects of commonly used eye drops. Conclusion: This brief review outlines the routes of systemic absorption and the kinetics of active components present in eye drops, and identifies the clinically relevant systemic adverse effects.
Collapse
Affiliation(s)
- Anu Vaajanen
- Department of Ophthalmology, Tampere University Hospital, P.O. Box 2000, 33521 Tampere, Finland.,SILK, Department of Ophthalmology, School of Medicine, University of Tampere, 33014, Tampere, Finland
| | - Heikki Vapaatalo
- Medical Faculty, Pharmacology, University of Helsinki, P.O. Box 63, 00014, Helsinki, Finland
| |
Collapse
|
7
|
Retinal gap junctions are involved in rhythmogenesis of neuronal activity at remote locations – Study on infra-slow oscillations in the rat olivary pretectal nucleus. Neuroscience 2016; 339:150-161. [DOI: 10.1016/j.neuroscience.2016.09.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/21/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022]
|
8
|
Barrett JM, Degenaar P, Sernagor E. Blockade of pathological retinal ganglion cell hyperactivity improves optogenetically evoked light responses in rd1 mice. Front Cell Neurosci 2015; 9:330. [PMID: 26379501 PMCID: PMC4548307 DOI: 10.3389/fncel.2015.00330] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/10/2015] [Indexed: 12/17/2022] Open
Abstract
Retinitis pigmentosa (RP) is a progressive retinal dystrophy that causes visual impairment and eventual blindness. Retinal prostheses are the best currently available vision-restoring treatment for RP, but only restore crude vision. One possible contributing factor to the poor quality of vision achieved with prosthetic devices is the pathological retinal ganglion cell (RGC) hyperactivity that occurs in photoreceptor dystrophic disorders. Gap junction blockade with meclofenamic acid (MFA) was recently shown to diminish RGC hyperactivity and improve the signal-to-noise ratio (SNR) of RGC responses to light flashes and electrical stimulation in the rd10 mouse model of RP. We sought to extend these results to spatiotemporally patterned optogenetic stimulation in the faster-degenerating rd1 model and compare the effectiveness of a number of drugs known to disrupt rd1 hyperactivity. We crossed rd1 mice with a transgenic mouse line expressing the light-sensitive cation channel channelrhodopsin2 (ChR2) in RGCs, allowing them to be stimulated directly using high-intensity blue light. We used 60-channel ITO multielectrode arrays to record ChR2-mediated RGC responses from wholemount, ex-vivo retinas to full-field and patterned stimuli before and after application of MFA, 18-β-glycyrrhetinic acid (18BGA, another gap junction blocker) or flupirtine (Flu, a Kv7 potassium channel opener). All three drugs decreased spontaneous RGC firing, but 18BGA and Flu also decreased the sensitivity of RGCs to optogenetic stimulation. Nevertheless, all three drugs improved the SNR of ChR2-mediated responses. MFA also made it easier to discern motion direction of a moving bar from RGC population responses. Our results support the hypothesis that reduction of pathological RGC spontaneous activity characteristic in retinal degenerative disorders may improve the quality of visual responses in retinal prostheses and they provide insights into how best to achieve this for optogenetic prostheses.
Collapse
Affiliation(s)
- John M Barrett
- Faculty of Medical Sciences, Institute of Neuroscience, Newcastle University Newcastle-upon-Tyne, UK
| | - Patrick Degenaar
- Faculty of Science, Agriculture and Engineering, School of Electrical and Electronic Engineering, Newcastle University Newcastle-upon-Tyne, UK
| | - Evelyne Sernagor
- Faculty of Medical Sciences, Institute of Neuroscience, Newcastle University Newcastle-upon-Tyne, UK
| |
Collapse
|
9
|
Li X, Fei J, Lei Z, Liu K, Wu J, Meng T, Yu J, Li J. Chloroquine impairs visual transduction via modulation of acid sensing ion channel 1a. Toxicol Lett 2014; 228:200-6. [PMID: 24821433 DOI: 10.1016/j.toxlet.2014.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/29/2014] [Accepted: 05/02/2014] [Indexed: 11/29/2022]
Abstract
Acid-sensing ion channels (ASICs) are extracellular pH sensors activated by protons, which influence retinal activity and phototransduction. Among all ASICs, ASIC1a is abundantly expressed in the retina and involved in normal retinal activity. Chloroquine, which has been used in the treatment of malaria, rheumatoid arthritis and systemic lupus erythematosus, has been shown to be toxic to the retina. However, the underlying mechanisms remain unclear. In this study, we investigated the role of chloroquine in phototransduction by measuring the electroretinogram (ERG). The effect of chloroquine on acid-evoked currents in either isolated rat retinal ganglion neurons (RGNs) or Chinese hamster ovary (CHO) cells transfected with ASIC1a were assessed using a whole-cell patch-clamp technique. Chloroquine reduced the b-wave of scotopic 0.01 and photopic 3.0 and amplitudes of oscillatory potentials (OPs), an effect which was almost completely reversed by PcTx1, an ASIC1a-specific channel blocker. Further, patch-clamp experiments demonstrated that chloroquine reduced the peak current amplitude and prolonged the activation and desensitization of ASIC1a currents. These chloroquine-induced effects on the kinetics of ASIC 1a were dose-, pH- and Ca(2+)-dependent. Taken together, these results demonstrate that chloroquine affects vision conduction by directly modifying the kinetics of ASIC1a. Such a mechanism, may, in part, explain the retinal toxicity of chloroquine.
Collapse
Affiliation(s)
- Xiaoyu Li
- Institute of Physiology, Shandong Univerisity School of Medicine, 44#,Wenhua Xi Road, Jinan, Shandong, 250012 PR China
| | - Jianchun Fei
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107#, Wenhua Xi Road, Jinan, 250012 PR China
| | - Zhen Lei
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107#, Wenhua Xi Road, Jinan, 250012 PR China
| | - Kejing Liu
- Institute of Physiology, Shandong Univerisity School of Medicine, 44#,Wenhua Xi Road, Jinan, Shandong, 250012 PR China
| | - Jianbo Wu
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107#, Wenhua Xi Road, Jinan, 250012 PR China
| | - Tao Meng
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107#, Wenhua Xi Road, Jinan, 250012 PR China
| | - Jingui Yu
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107#, Wenhua Xi Road, Jinan, 250012 PR China
| | - Jingxin Li
- Institute of Physiology, Shandong Univerisity School of Medicine, 44#,Wenhua Xi Road, Jinan, Shandong, 250012 PR China.
| |
Collapse
|