1
|
Begum SMFM, Hemalatha S. Gelidiella acerosa Compounds Target NFκB Cascade in Lung Adenocarcinoma. Appl Biochem Biotechnol 2021; 194:1566-1579. [PMID: 34811638 DOI: 10.1007/s12010-021-03761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
In carcinogenesis, increased metabolism, abnormal functioning of mitochondria, peroxisomes, aberrant cell signaling, and prolonged inflammation can result in the overproduction of reactive oxygen species (ROS). In turn, excess ROS can upregulate the expression of various signaling pathways including the MAP kinase, PI3K/Akt, and NFκB cascades in cancer. The constitutive expression of NFκB causes drug resistance in lung cancer. Hence, drugs that can enhance the antioxidant activity of enzymes and regulate the NFκB activity are of prime target to manage the drug resistance and inflammation in cancer. This study evaluated the effect of compounds present in ethyl acetate extract of Gelidiella acerosa on inflammation and on antioxidant enzymes in lung cancer. The anti-inflammatory activity was determined under in silico and in vitro conditions. The in silico analysis showed that the phyto-constituents of G. acerosa inhibit the IKBα-NFκB-p65-p50 complex in a similar way as that of doxorubicin and dexamethasone. Similarly, G. acerosa treatment enhanced the efficiency of antioxidant enzymes peroxidases and superoxide dismutase in A549 lung cancer cells. Furthermore, the results of in vitro analysis showed that G. acerosa can decrease the activation of NFκB and production of pro-inflammatory cytokines and upregulate the expression of IL 10. As inflammation causes cancer progression, the inhibition of inflammation inhibits tumorigenesis. Hence, based on the results of the study, it can be concluded that G. acerosa exerts anti-inflammatory activity by decreasing the expression of NFκB cascade and moreover, the phyto-constituents of G. acerosa may have the potential to regulate the inflammatory response.
Collapse
Affiliation(s)
- S M Fazeela Mahaboob Begum
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India.,Department of Biochemistry, New Prince Shri Bhavani Arts and Science College, Chennai, India
| | - S Hemalatha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India.
| |
Collapse
|
2
|
Choi EM, Suh KS, Jung WW, Yun S, Park SY, Chin SO, Rhee SY, Chon S. Catalpol protects against 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cytotoxicity in osteoblastic MC3T3-E1 cells. J Appl Toxicol 2019; 39:1710-1719. [PMID: 31429101 DOI: 10.1002/jat.3896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 01/23/2023]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a well-known environmental contaminant that produces a wide variety of adverse effects in humans. Catalpol, a major bioactive compound enriched in the dried root of Rehmannia glutinosa, is a major iridoid glycoside that alleviates bone loss. However, the detailed mechanisms underlying the effects of catalpol remain unclear. The present study evaluated the effects of catalpol on TCDD-induced cytotoxicity in osteoblastic MC3T3-E1 cells. Catalpol inhibited TCDD-induced reduction in cell viability and increases in apoptosis and autophagic activity in osteoblastic MC3T3-E1 cells. Additionally, pretreatment with catalpol significantly decreased the nitric oxide and nitrite levels compared with a control in TCDD-treated cells and significantly inhibited TCDD-induced increases in the levels of cytochrome P450 1A1 and extracellular signal-regulated kinase. Pretreatment with catalpol also effectively restored the expression of superoxide dismutase and extracellular signal-regulated kinase 1 and significantly enhanced the expression of glutathione peroxidase 4 and osteoblast differentiation markers, including alkaline phosphatase and osterix. Taken together, these findings demonstrate that catalpol has preventive effects against TCDD-induced damage in MC3T3-E1 osteoblastic cells.
Collapse
Affiliation(s)
- Eun Mi Choi
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang Sik Suh
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woon-Won Jung
- Department of Biomedical Laboratory Science, College of Health Sciences, Cheongju University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Soojin Yun
- Department of Medicine, Graduate School, Kyung Hee University, Seoule, Republic of Korea.,Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - So Young Park
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Sang Ouk Chin
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Sang Youl Rhee
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Suk Chon
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, Republic of Korea
| |
Collapse
|
3
|
Wu JC, Lai CS, Tsai ML, Ho CT, Wang YJ, Pan MH. Chemopreventive effect of natural dietary compounds on xenobiotic-induced toxicity. J Food Drug Anal 2016; 25:176-186. [PMID: 28911535 PMCID: PMC9333419 DOI: 10.1016/j.jfda.2016.10.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 02/08/2023] Open
Abstract
Contaminants (or pollutants) that affect human health have become an important issue, spawning a myriad of studies on how to prevent harmful contaminant-induced effects. Recently, a variety of biological functions of natural dietary compounds derived from consumed foods and plants have been demonstrated in a number of studies. Natural dietary compounds exhibited several beneficial effects for the prevention of disease and the inhibition of chemically-induced carcinogenesis. Contaminant-induced toxicity and carcinogenesis are mostly attributed to the mutagenic activity of reactive metabolites and the disruption of normal biological functions. Therefore, the metabolic regulation of hazardous chemicals is key to reducing contaminant-induced adverse health effects. Moreover, promoting contaminant excretion from the body through Phase I and II metabolizing enzymes is also a useful strategy for reducing contaminant-induced toxicity. This review focuses on summarizing the natural dietary compounds derived from common dietary foods and plants and their possible mechanisms of action in the prevention/suppression of contaminant-induced toxicity.
Collapse
Affiliation(s)
- Jia-Ching Wu
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan; Department of Biomedical Informatics, Asia University, Taichung, Taiwan; Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Min-Hsiung Pan
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan; Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|