1
|
Dong Q, Wang Z, Jiang M, Sun H, Wang X, Li Y, Zhang Y, Cheng H, Chai Y, Shao T, Shi L, Wang Z. Transcriptome analysis of the response provided by Lasiopodomys mandarinus to severe hypoxia includes enhancing DNA repair and damage prevention. Front Zool 2020; 17:9. [PMID: 32256671 PMCID: PMC7106638 DOI: 10.1186/s12983-020-00356-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/16/2020] [Indexed: 02/08/2023] Open
Abstract
Background Severe hypoxia induces a series of stress responses in mammals; however, subterranean rodents have evolved several adaptation mechanisms of energy metabolisms and O2 utilization for hypoxia. Mammalian brains show extreme aerobic metabolism. Following hypoxia exposure, mammals usually experience irreversible brain damage and can even develop serious diseases, such as hypoxic ischemic encephalopathy and brain edema. To investigate mechanisms underlying the responses of subterranean rodents to severe hypoxia, we performed a cross-species brain transcriptomic analysis using RNA sequencing and identified differentially expressed genes (DEGs) between the subterranean rodent Lasiopodomys mandarinus and its closely related aboveground species L. brandtii under severe hypoxia (5.0% O2, 6 h) and normoxia (20.9% O2, 6 h). Results We obtained 361 million clean reads, including 69,611 unigenes in L. mandarinus and 69,360 in L. brandtii. We identified 359 and 515 DEGs by comparing the hypoxic and normoxia groups of L. mandarinus and L. brandtii, respectively. Gene Ontology (GO) analysis showed that upregulated DEGs in both species displayed similar terms in response to severe hypoxia; the main difference is that GO terms of L. brandtii were enriched in the immune system. However, in the downregulated DEGs, GO terms of L. mandarinus were enriched in cell proliferation and protein transport and those of L. brandtii were enriched in nuclease and hydrolase activities, particularly in terms of developmental functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that upregulated DEGs in L. mandarinus were associated with DNA repair and damage prevention as well as angiogenesis and metastasis inhibition, whereas downregulated DEGs were associated with neuronal synaptic transmission and tumor-associated metabolic pathways. In L. brandtii, upregulated KEGG pathways were enriched in the immune, endocrine, and cardiovascular systems and particularly in cancer-related pathways, whereas downregulated DEGs were associated with environmental information processing and misregulation in cancers. Conclusions L. mandarinus has evolved hypoxia adaptation by enhancing DNA repair, damage prevention, and augmenting sensing, whereas L. brandtii showed a higher risk of tumorigenesis and promoted innate immunity toward severe hypoxia. These results reveal the hypoxic mechanisms of L. mandarinus to severe hypoxia, which may provide research clues for hypoxic diseases.
Collapse
Affiliation(s)
- Qianqian Dong
- 1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China
| | - Zishi Wang
- 1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China
| | - Mengwan Jiang
- 1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China
| | - Hong Sun
- 2College of Physical Education (main campus), Zhengzhou University, Zhengzhou, Henan Province China
| | - Xuqin Wang
- 1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China
| | - Yangwei Li
- 1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China.,3Central Laboratory, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008 Henan Province China
| | - Yifeng Zhang
- 1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China
| | - Han Cheng
- 1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China
| | - Yurong Chai
- 4School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China
| | - Tian Shao
- 1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China
| | - Luye Shi
- 1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China
| | - Zhenlong Wang
- 1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China
| |
Collapse
|
2
|
Gündüz B, Karakaş A, Terzi H, Öner J, Serin E, Kükner A. The effect of pinealectomy and leptin hormone on the proliferation and apoptosis activation in Syrian hamster testis in different photoperiods. ACTA ACUST UNITED AC 2009; 32:343-52. [DOI: 10.1111/j.1365-2605.2008.00867.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Abstract
The purpose of this study was to determine whether decreased day lengths affect reproduction or the immune system in inbred mice. Irrespective of a nocturnal pineal melatonin rise, the signal for day length information, body and testis weights were the same in various strains 8 weeks after transfer from long to short days (16 to 8 h of light/day) compared to mice that remained in long days. Serum testosterone was unaffected by the photoperiod shift. The second goal was to determine whether the shift from long to short days influenced lymphocyte populations in spleen or blood, as well as innate and cell-mediated immune cell functions in C3H/HeN mice, an inbred strain with a robust melatonin rhythm. By flow cytometry, a stable percentage and number of B cells, T cells, and natural killer cells were identified in spleen from mice in both long and short days during the day and night. This complement of immunophenotypes in spleen suggests that equivalent functional capabilities persist in secondary lymphoid tissue of mice irrespective of day length. This was supported by findings that cytolytic activity by splenic natural killer cells (innate immunity) and antigen-induced T cell-dependent B cell antibody production (adaptive immunity) were similar in mice in long and short days. In blood, cell numbers but not helper T cell subset percentages (i.e., naive, memory, cytotoxic, or activated) were augmented in mice in short compared to long days, a consequence of increased circulating B cells. Day length differences in certain immunophenotypes in circulation may forecast photoperiod-mediated alterations in responsiveness to pathogens that are associated with a change in season. At night, the reduced proportion of cytotoxic T cells (long and short days), as well as increases in the percentage of activated T cells (long days), B cells (short days), and NK cell activity (long and short days) relative to daytime, suggests that surveillance and function by select immunophenotypes may adapt to circadian transitions even in highly inbred species. Thus, inbred mice retain capabilities for photoperiod to influence trait-specific aspects of immune cell but not reproductive function.
Collapse
Affiliation(s)
- S M Yellon
- Center for Perinatal Biology, Department of Physiology, Loma Linda University School of Medicine, CA 92350, USA.
| | | |
Collapse
|