1
|
The Role of Glutathione in Protecting against the Severe Inflammatory Response Triggered by COVID-19. Antioxidants (Basel) 2020; 9:antiox9070624. [PMID: 32708578 PMCID: PMC7402141 DOI: 10.3390/antiox9070624] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
The novel COVID-19 pandemic is affecting the world’s population differently: mostly in the presence of conditions such as aging, diabetes and hypertension the virus triggers a lethal cytokine storm and patients die from acute respiratory distress syndrome, whereas in many cases the disease has a mild or even asymptomatic progression. A common denominator in all conditions associated with COVID-19 appears to be the impaired redox homeostasis responsible for reactive oxygen species (ROS) accumulation; therefore, levels of glutathione (GSH), the key anti-oxidant guardian in all tissues, could be critical in extinguishing the exacerbated inflammation that triggers organ failure in COVID-19. The present review provides a biochemical investigation of the mechanisms leading to deadly inflammation in severe COVID-19, counterbalanced by GSH. The pathways competing for GSH are described to illustrate the events concurring to cause a depletion of endogenous GSH stocks. Drawing on evidence from literature that demonstrates the reduced levels of GSH in the main conditions clinically associated with severe disease, we highlight the relevance of restoring GSH levels in the attempt to protect the most vulnerable subjects from severe symptoms of COVID-19. Finally, we discuss the current data about the feasibility of increasing GSH levels, which could be used to prevent and subdue the disease.
Collapse
|
2
|
Astrocyte glutathione maintains endothelial barrier stability. Redox Biol 2020; 34:101576. [PMID: 32502899 PMCID: PMC7267730 DOI: 10.1016/j.redox.2020.101576] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/28/2020] [Accepted: 05/10/2020] [Indexed: 12/30/2022] Open
Abstract
Blood-brain barrier (BBB) impairment clearly accelerates brain disease progression. As ways to prevent injury-induced barrier dysfunction remain elusive, better understanding of how BBB cells interact and modulate barrier integrity is needed. Our metabolomic profiling study showed that cell-specific adaptation to injury correlates well with metabolic reprogramming at the BBB. In particular we noted that primary astrocytes (AC) contain comparatively high levels of glutathione (GSH)-related metabolites compared to primary endothelial cells (EC). Injury significantly disturbed redox balance in 10.13039/501100000780EC but not AC motivating us to assess 1) whether an AC-10.13039/501100000780EC GSH shuttle supports barrier stability and 2) the impact of GSH on 10.13039/501100000780EC function. Using an isotopic labeling/tracking approach combined with Time-of-Flight Mass Spectrometry (TOF-MS) we prove that AC constantly shuttle GSH to EC even under resting conditions - a flux accelerated by injury conditions in vitro. In correlation, co-culture studies revealed that blocking AC GSH generation and secretion via siRNA-mediated γ-glutamyl cysteine ligase (GCL) knockdown significantly compromises EC barrier integrity. Using different GSH donors, we further show that exogenous GSH supplementation improves barrier function by maintaining organization of tight junction proteins and preventing injury-induced tight junction phosphorylation. Thus the AC GSH shuttle is key for maintaining EC redox homeostasis and BBB stability suggesting GSH supplementation could improve recovery after brain injury. Astrocytes maintain better redox homeostasis during injury conditions than brain endothelial cells. Astrocyte-secreted glutathione abrogates injury-induced endothelial permeability. Exogenous GSH prevents injury-induced tight junction disruption. Better understanding of metabolic paracellular crosstalk could offer more opportunities to safeguard BBB integrity.
Collapse
|
3
|
Carraway KR, Johnson EM, Kauffmann TC, Fry NJ, Mansfield KD. Hypoxia and Hypoglycemia synergistically regulate mRNA stability. RNA Biol 2017; 14:938-951. [PMID: 28362162 PMCID: PMC5546718 DOI: 10.1080/15476286.2017.1311456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ischemic events, common in many diseases, result from decreased blood flow and impaired delivery of oxygen and glucose to tissues of the body. While much is known about the cellular transcriptional response to ischemia, much less is known about the posttranscriptional response to oxygen and glucose deprivation. The goal of this project was to investigate one such posttranscriptional response, the regulation of mRNA stability. To that end, we have identified several novel ischemia-related mRNAs that are synergistically stabilized by oxygen and glucose deprivation including VEGF, MYC, MDM2, and CYR61. This increase in mRNA half-life requires the synergistic effects of both low oxygen (1%) as well as low glucose (≤ 1 g/L) conditions. Oxygen or glucose deprivation alone fails to initiate the response, as exposure to either high glucose (4 g/L) or normoxic conditions inhibits the response. Furthermore, in response to hypoxia/hypoglycemia, the identified mRNAs are released from the RNA binding protein KHSRP which likely contributes to their stabilization.
Collapse
Affiliation(s)
- Kristen R Carraway
- a Biochemistry and Molecular Biology, Brody School of Medicine , East Carolina University , Greenville , NC , USA
| | - Ellen M Johnson
- a Biochemistry and Molecular Biology, Brody School of Medicine , East Carolina University , Greenville , NC , USA
| | - Travis C Kauffmann
- b Brody School of Medicine , East Carolina University , Greenville , NC , USA
| | - Nate J Fry
- a Biochemistry and Molecular Biology, Brody School of Medicine , East Carolina University , Greenville , NC , USA
| | - Kyle D Mansfield
- a Biochemistry and Molecular Biology, Brody School of Medicine , East Carolina University , Greenville , NC , USA
| |
Collapse
|
4
|
Hsieh CH, Lin YJ, Chen WL, Huang YC, Chang CW, Cheng FC, Liu RS, Shyu WC. HIF-1α triggers long-lasting glutamate excitotoxicity via system x c- in cerebral ischaemia-reperfusion. J Pathol 2016; 241:337-349. [PMID: 27801527 DOI: 10.1002/path.4838] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/26/2016] [Accepted: 10/17/2016] [Indexed: 11/11/2022]
Abstract
Hypoxia-inducible factor 1α (HIF-1α) controls many genes involved in physiological and pathological processes. However, its roles in glutamatergic transmission and excitotoxicity are unclear. Here, we proposed that HIF-1α might contribute to glutamate-mediated excitotoxicity during cerebral ischaemia-reperfusion (CIR) and investigated its molecular mechanism. We showed that an HIF-1α conditional knockout mouse displayed an inhibition in CIR-induced elevation of extracellular glutamate and N-methyl-d-aspartate receptor (NMDAR) activation. By gene screening for glutamate transporters in cortical cells, we found that HIF-1α mainly regulates the cystine-glutamate transporter (system xc- ) subunit xCT by directly binding to its promoter; xCT and its function are up-regulated in the ischaemic brains of rodents and humans, and the effects lasted for several days. Genetic deletion of xCT in cortical cells of mice inhibits either oxygen glucose deprivation/reoxygenation (OGDR) or CIR-mediated glutamate excitotoxicity in vitro and in vivo. Pharmaceutical inhibition of system xc- by a clinically approved anti-cancer drug, sorafenib, improves infarct volume and functional outcome in rodents with CIR and its therapeutic window is at least 3 days. Taken together, these findings reveal that HIF-1α plays a role in CIR-induced glutamate excitotoxicity via the long-lasting activation of system xc- -dependent glutamate outflow and suggest that system xc- is a promising therapeutic target with an extended therapeutic window in stroke. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chia-Hung Hsieh
- Graduate Institute of Basic Medical Science, China Medical University, No 91, Hsueh-Shih Road, Taichung, Taiwan, 40402.,Department of Medical Research, China Medical University Hospital, No 2, Yuh-Der Road, Taichung, Taiwan, 40402.,Aging Medicine Program, China Medical University, No 91, Hsueh-Shih Road, Taichung, Taiwan, 40402.,Department of Biomedical Informatics, Asia University, No 500, Lioufeng Road, Taichung, Taiwan, 41354
| | - Yu-Jung Lin
- Graduate Institute of Basic Medical Science, China Medical University, No 91, Hsueh-Shih Road, Taichung, Taiwan, 40402
| | - Wei-Ling Chen
- Aging Medicine Program, China Medical University, No 91, Hsueh-Shih Road, Taichung, Taiwan, 40402
| | - Yen-Chih Huang
- Graduate Institute of Immunology, China Medical University, No 91, Hsueh-Shih Road, Taichung, Taiwan, 40402
| | - Chi-Wei Chang
- National PET/Cyclotron Center and Department of Nuclear Medicine, Taipei Veterans General Hospital, No 201, Shipai Road, Taipei, Taiwan, 11217
| | - Fu-Chou Cheng
- Stem Cell Center, Department of Medical Research, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Section 4, Taichung, Taiwan, 40705
| | - Ren-Shyan Liu
- National PET/Cyclotron Center and Department of Nuclear Medicine, Taipei Veterans General Hospital, No 201, Shipai Road, Taipei, Taiwan, 11217
| | - Woei-Cherng Shyu
- Department of Neurology, Center for Neuropsychiatry, China Medical University and Hospital, No 91, Hsueh-Shih Road, Taichung, Taiwan, 40402
| |
Collapse
|
5
|
Nguyen Ho-Bouldoires TH, Clapéron A, Mergey M, Wendum D, Desbois-Mouthon C, Tahraoui S, Fartoux L, Chettouh H, Merabtene F, Scatton O, Gaestel M, Praz F, Housset C, Fouassier L. Mitogen-activated protein kinase-activated protein kinase 2 mediates resistance to hydrogen peroxide-induced oxidative stress in human hepatobiliary cancer cells. Free Radic Biol Med 2015; 89:34-46. [PMID: 26169728 DOI: 10.1016/j.freeradbiomed.2015.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/25/2015] [Accepted: 07/08/2015] [Indexed: 12/21/2022]
Abstract
The development and progression of liver cancer are characterized by increased levels of reactive oxygen species (ROS). ROS-induced oxidative stress impairs cell proliferation and ultimately leads to cell death. Although liver cancer cells are especially resistant to oxidative stress, mechanisms of such resistance remain understudied. We identified the MAPK-activated protein kinase 2 (MK2)/heat shock protein 27 (Hsp27) signaling pathway mediating defenses against oxidative stress. In addition to MK2 and Hsp27 overexpression in primary liver tumors compared to adjacent nontumorous tissues, the MK2/Hsp27 pathway is activated by hydrogen peroxide-induced oxidative stress in hepatobiliary cancer cells. MK2 inactivation or inhibition of MK2 or Hsp27 expression increases caspase-3 and PARP cleavage and DNA breaks and therefore cell death. Interestingly, MK2/Hsp27 inhibition decreases antioxidant defenses such as heme oxygenase 1 through downregulation of the transcription factor nuclear factor erythroid-derived 2-like 2. Moreover, MK2/Hsp27 inhibition decreases both phosphorylation of epidermal growth factor receptor (EGFR) and expression of its ligand, heparin-binding EGF-like growth factor. A new identified partner of MK2, the scaffold PDZ protein EBP50, could facilitate these effects through MK2/Hsp27 pathway regulation. These findings demonstrate that the MK2/Hsp27 pathway actively participates in resistance to oxidative stress and may contribute to liver cancer progression.
Collapse
Affiliation(s)
- Thanh Huong Nguyen Ho-Bouldoires
- INSERM UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France
| | - Audrey Clapéron
- INSERM UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France
| | - Martine Mergey
- INSERM UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France
| | - Dominique Wendum
- INSERM UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Service d'Anatomie et Cytologie Pathologiques, AP-HP, Hôpital Saint-Antoine, F-75012 Paris, France
| | - Christèle Desbois-Mouthon
- INSERM UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France
| | - Sylvana Tahraoui
- INSERM UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France
| | - Laetitia Fartoux
- INSERM UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Service d'Hépatologie, AP-HP, Hôpital Saint-Antoine, F-75012 Paris, France
| | - Hamza Chettouh
- INSERM UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France
| | - Fatiha Merabtene
- INSERM UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France
| | - Olivier Scatton
- INSERM UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Service de Chirurgie Hépato-Biliaire et Transplantation Hépatique, AP-HP, Hôpital Saint-Antoine, F-75012 Paris, France
| | - Matthias Gaestel
- Institute of Physiological Chemistry, Hannover Medical School, D-30625 Hannover, Germany
| | - Françoise Praz
- INSERM UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France
| | - Chantal Housset
- INSERM UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Service d'Hépatologie, AP-HP, Hôpital Saint-Antoine, F-75012 Paris, France
| | - Laura Fouassier
- INSERM UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France.
| |
Collapse
|
6
|
Al Ahmad A, Gassmann M, Ogunshola OO. Involvement of oxidative stress in hypoxia-induced blood-brain barrier breakdown. Microvasc Res 2012; 84:222-5. [PMID: 22668821 DOI: 10.1016/j.mvr.2012.05.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/01/2012] [Accepted: 05/25/2012] [Indexed: 01/19/2023]
Abstract
The blood-brain barrier (BBB) is a cellular barrier formed by specialized brain endothelial cells under the influence of astrocytes and pericytes. Among the several stress factors known to induce BBB breakdown, hypoxia is probably the most represented but also the least understood. Recent evidence of oxidative stress occurring during hypoxia/ischemia situation raises its possible contribution to barrier breakdown. In this study, we investigated the relevance of oxidative stress in hypoxia-induced barrier disruption. Prolonged hypoxic exposure induced reactive oxygen species (ROS) formation and induced glutathione oxidation. Such effects were accentuated under extreme O(2) deprived environment. Pro-oxidant treatment significantly disrupted barrier function under normal conditions, whereas anti-oxidant treatment contributed to maintain better barrier function and cell survival in an O(2)-reduced environment. In addition, the endothelial response to oxidative stress appeared modulated by the presence of astrocytes and pericytes, thus explaining some of the beneficial contribution of these cells as previously described. Taken together, this study highlights the importance of oxidative stress signaling at the barrier. In addition, cells of the neurovascular compartment differentially modulate ROS levels and also regulate barrier function. Thus, use of reactive oxygen scavengers may be useful to support barrier function following stroke injury.
Collapse
Affiliation(s)
- Abraham Al Ahmad
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|