1
|
Drysdale V, Cmielewski P, Donnelley M, Reyne N, Parsons D, McCarron A. Comparison of physical perturbation devices for enhancing lentiviral vector-mediated gene transfer to the airway epithelium. Hum Gene Ther 2022; 33:1062-1072. [PMID: 35920214 DOI: 10.1089/hum.2022.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Natural airway defences currently impede the efficacy of viral vector-mediated airway gene therapy. Conditioning airways prior to vector delivery can disrupt these barriers, improving viral vector access to target receptors and airway stem cells. This study aimed to assess and quantify the in vivo histological and gene transfer effects of physical perturbation devices to identify effective conditioning approaches. A range of flexible wire baskets with varying configurations, a Brush, biopsy forceps, and a balloon catheter were examined. We first evaluated the histological effects of physical perturbation devices in rat tracheas that were excised 10 minutes after conditioning. Based on the histological findings, a selection of devices were used to condition rat tracheas in vivo before delivering a lentiviral vector containing the LacZ reporter gene. After 7 days, excised tracheas were X-gal processed and examined en face to quantify the area of LacZ staining. Histological observations 10 minutes after conditioning found that physical perturbation dislodged cells from the basement membrane to varying degrees, with some producing significant levels of epithelial cell removal. When a subset of devices were assessed for their ability to enhance gene transfer, only the NGage® wire basket (Cook Medical) produced a significant increase in the proportion of X-gal-stained area when compared to unconditioned tracheas (8-fold, p = 0.00025). These results suggest that a range of factors contribute to perturbation-enhanced gene transfer. Overall, this study supports existing evidence that physical perturbation can assist airway gene transfer, and will help to identify the characteristics of an effective device for airway gene therapy.
Collapse
Affiliation(s)
- Victoria Drysdale
- The University of Adelaide, Adelaide Medical School , Adelaide, South Australia, Australia.,The University of Adelaide, Robinson Research Institute , Adelaide, South Australia, Australia.,Women's and Children's Hospital Adelaide, North Adelaide, South Australia, Australia;
| | - Patricia Cmielewski
- The University of Adelaide, Adelaide Medical School , Adelaide, South Australia, Australia.,The University of Adelaide, Robinson Research Institute , Adelaide, South Australia, Australia.,Women's and Children's Hospital Adelaide, North Adelaide, South Australia, Australia;
| | - Martin Donnelley
- The University of Adelaide, Adelaide Medical School , Adelaide, South Australia, Australia.,The University of Adelaide, Robinson Research Institute , Adelaide, South Australia, Australia.,Women's and Children's Hospital Adelaide, Respiratory and Sleep Medicine , North Adelaide, South Australia, Australia;
| | - Nicole Reyne
- The University of Adelaide, Adelaide Medical School , Adelaide, South Australia, Australia.,The University of Adelaide, Robinson Research Institute , Adelaide, South Australia, Australia.,Women's and Children's Hospital Adelaide, North Adelaide, South Australia, Australia;
| | - David Parsons
- The University of Adelaide, Adelaide Medical School , Adelaide, South Australia, Australia.,The University of Adelaide, Robinson Research Institute, Adelaide, South Australia, Australia.,Women's and Children's Hospital Adelaide, Respiratory and Sleep Medicine, North Adelaide, South Australia, Australia;
| | - Alexandra McCarron
- The University of Adelaide, Adelaide Medical School , Adelaide, South Australia, Australia.,The University of Adelaide, Robinson Research Institute , Adelaide, South Australia, Australia.,Women's and Children's Hospital Adelaide, Respiratory and Sleep Medicine , North Adelaide, South Australia, Australia;
| |
Collapse
|
2
|
Lian J, Lin J, Zakaria N, Yahaya BH. Acute Lung Injury: Disease Modelling and the Therapeutic Potential of Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1298:149-166. [PMID: 32424492 DOI: 10.1007/5584_2020_538] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute lung injury (ALI) is a severe clinical condition with high morbidity and mortality that usually results in the development of multiple organ dysfunction. The complex pathophysiology of ALI seems to provide a wide range of targets that offer numerous therapeutic options. However, despite extensive studies of ALI pathophysiology and treatment, no effective pharmacotherapy is available. Increasing evidence from both preclinical and clinical studies supports the preventive and therapeutic effects of mesenchymal stem cells (MSCs) for treating ALI. As cell-based therapy poses the risk of occlusion in microvasculature or unregulated growth, MSC-derived extracellular vesicles (MSC-EVs) have been extensively studied as a new therapeutic strategy for non-cell based therapy. It is widely accepted that the therapeutic properties of MSCs are derived from soluble factors with paracrine or endocrine effects, and EVs are among the most important paracrine or endocrine vehicles that can deliver various soluble factors with a similar phenotype as the parent cell. Therapeutic effects of MSCs have been reported for various delivery approaches, diverse doses, multiple origins, and different times of administration, and MSC-EVs treatment may include but is not limited to these choices. The mechanisms by which MSCs and MSC-EVs may contribute to ALI treatment remain elusive and need further exploration. This review provides an overview of preclinical studies that support the application of MSC-EVs for treating ALI, and it discusses emerging opportunities and their associated challenges.
Collapse
Affiliation(s)
- Jie Lian
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, SAINS@Bertam, Penang, Malaysia.,Stem Cell and Biotherapy Technology Research Center of Henan Province, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center of Henan Province, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Norashikin Zakaria
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, SAINS@Bertam, Penang, Malaysia
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, SAINS@Bertam, Penang, Malaysia.
| |
Collapse
|
3
|
Froux L, Billet A, Becq F. Modulating the cystic fibrosis transmembrane regulator and the development of new precision drugs. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018. [DOI: 10.1080/23808993.2018.1547109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Lionel Froux
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
| | - Arnaud Billet
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
| | - Frédéric Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
| |
Collapse
|
4
|
Kardia E, Ch'ng ES, Yahaya BH. Aerosol-based airway epithelial cell delivery improves airway regeneration and repair. J Tissue Eng Regen Med 2017; 12:e995-e1007. [PMID: 28105760 DOI: 10.1002/term.2421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 09/13/2016] [Accepted: 01/17/2017] [Indexed: 01/09/2023]
Abstract
Aerosol-based cell therapy has emerged as a novel and promising therapeutic strategy for treating lung diseases. The goal of this study was to determine the safety and efficacy of aerosol-based airway epithelial cell (AEC) delivery in the setting of acute lung injury induced by tracheal brushing in rabbit. Twenty-four hours following injury, exogenous rabbit AECs were labelled with bromodeoxyuridine and aerosolized using the MicroSprayer® Aerosolizer into the injured airway. Histopathological assessments of the injury in the trachea and lungs were quantitatively scored (1 and 5 days after cell delivery). The aerosol-based AEC delivery appeared to be a safe procedure, as cellular rejection and complications in the liver and spleen were not detected. Airway injury initiated by tracheal brushing resulted in disruption of the tracheal epithelium as well as morphological damage in the lungs that is consistent with acute lung injury. Lung injury scores were reduced following 5 days after AEC delivery (AEC-treated, 0.25 ± 0.06 vs. untreated, 0.53 ± 0.05, P < 0.01), and rapid clearance of haemorrhage, proteinaceous debris and hyaline membranes occurred. In the trachea, AEC delivery led to an upsurge in epithelium regeneration and repair. Re-epithelialization was significantly increased 5 days after treatment (AEC-treated, 91.07 ± 2.37% vs. untreated, 62.99 ± 7.39%, P < 0.01). Our results indicate that AEC delivery helps in the regeneration and repair of the respiratory airway, including the lungs, following acute insults. These findings suggest that aerosol-based AEC delivery can be a valuable tool for future therapy to treat acute lung injury. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- E Kardia
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - E S Ch'ng
- Oncology and Radiological Sciences Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - B H Yahaya
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| |
Collapse
|
5
|
Zhu BY, Johnson LR, Vernau W. Tracheobronchial brush cytology and bronchoalveolar lavage in dogs and cats with chronic cough: 45 cases (2012-2014). J Vet Intern Med 2015; 29:526-32. [PMID: 25818208 PMCID: PMC4895494 DOI: 10.1111/jvim.12566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 12/18/2014] [Accepted: 01/29/2015] [Indexed: 11/29/2022] Open
Abstract
Background Animals with chronic cough can have normal bronchoalveolar lavage fluid cytology when small airway disease is absent. Cytology of a tracheobronchial brushing can detect inflammation in larger airways; however, evaluation of this technique has been limited in veterinary medicine. Objective To compare airway brush cytology to bronchoalveolar lavage fluid analysis in dogs and cats with chronic cough. Animals Forty dogs and five cats undergoing bronchoscopic investigation of chronic cough. Methods Prospective study. Bronchoscopy and bronchoalveolar lavage were performed followed by tracheobronchial brushing of central airways. Results of cytologic assessment of BAL fluid and brush cytology were compared for the presence or absence of inflammation and concordance of inflammatory cell type. Results Brush cytology detected central airway inflammation in 34 of 40 (85%) dogs with inflammatory BAL fluid. However, the type of inflammation reported differed in 23 of 34 dogs. In five cats with inflammation in BAL fluid, brush cytology detected inflammation in four; the type of inflammation was discordant in all cats. Conclusions and clinical relevance Brush cytology has good agreement with BAL regarding the presence of inflammation, although the type of inflammation detected with the different sampling techniques commonly varies. Brush cytology can provide supplementary information to BAL, and additional studies will provide further information on the role of tracheobronchial brush cytology in the diagnosis and management of respiratory conditions.
Collapse
Affiliation(s)
- B Y Zhu
- William R. Pritchard Veterinary Medical Teaching Hospital, University of California, Davis, CA
| | | | | |
Collapse
|
6
|
The rabbit as a model for studying lung disease and stem cell therapy. BIOMED RESEARCH INTERNATIONAL 2013; 2013:691830. [PMID: 23653896 PMCID: PMC3638694 DOI: 10.1155/2013/691830] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/28/2013] [Accepted: 02/28/2013] [Indexed: 12/21/2022]
Abstract
No single animal model can reproduce all of the human features of both acute and chronic lung diseases. However, the rabbit is a reliable model and clinically relevant facsimile of human disease. The similarities between rabbits and humans in terms of airway anatomy and responses to inflammatory mediators highlight the value of this species in the investigation of lung disease pathophysiology and in the development of therapeutic agents. The inflammatory responses shown by the rabbit model, especially in the case of asthma, are comparable with those that occur in humans. The allergic rabbit model has been used extensively in drug screening tests, and this model and humans appear to be sensitive to similar drugs. In addition, recent studies have shown that the rabbit serves as a good platform for cell delivery for the purpose of stem-cell-based therapy.
Collapse
|
7
|
BrdU pulse labelling in vivo to characterise cell proliferation during regeneration and repair following injury to the airway wall in sheep. ScientificWorldJournal 2013; 2013:871932. [PMID: 23533365 PMCID: PMC3603505 DOI: 10.1155/2013/871932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 01/18/2013] [Indexed: 11/17/2022] Open
Abstract
The response of S-phase cells labelled with
bromodeoxyuridine (BrdU) in sheep airways undergoing repair
in response to endobronchial brush biopsy was investigated
in this study. Separate sites within the airway tree of anaesthetised
sheep were biopsied at intervals prior to pulse labelling with
BrdU, which was administered one hour prior to euthanasia.
Both brushed and spatially disparate unbrushed (control) sites
were carefully mapped, dissected, and processed to facilitate
histological analysis of BrdU labelling. Our study indicated
that the number and location of BrdU-labelled cells varied
according to the age of the repairing injury. There was little
evidence of cell proliferation in either control airway tissues
or airway tissues examined six hours after injury. However,
by days 1 and 3, BrdU-labelled cells were increased
in number in the airway wall, both at the damaged site
and in the regions flanking either side of the injury. Thereafter,
cell proliferative activity largely declined by day 7 after injury,
when consistent evidence of remodelling in the airway wall could
be appreciated. This study successfully demonstrated the
effectiveness of in vivo pulse labelling in tracking cell
proliferation during repair which has a potential value in
exploring the therapeutic utility of stem cell approaches
in relevant lung disease models.
Collapse
|
8
|
Yahaya B. Understanding cellular mechanisms underlying airway epithelial repair: selecting the most appropriate animal models. ScientificWorldJournal 2012; 2012:961684. [PMID: 23049478 PMCID: PMC3461624 DOI: 10.1100/2012/961684] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/07/2012] [Indexed: 12/18/2022] Open
Abstract
Understanding the mechanisms underlying the process of regeneration and repair of airway epithelial structures demands close characterization of the associated cellular and molecular events. The choice of an animal model system to study these processes and the role of lung stem cells is debatable since ideally the chosen animal model should offer a valid comparison with the human lung. Species differences may include the complex three-dimensional lung structures, cellular composition of the lung airway as well as transcriptional control of the molecular events in response to airway epithelium regeneration, and repair following injury. In this paper, we discuss issues related to the study of the lung repair and regeneration including the role of putative stem cells in small- and large-animal models. At the end of this paper, the author discuss the potential for using sheep as a model which can help bridge the gap between small-animal model systems and humans.
Collapse
Affiliation(s)
- B Yahaya
- Cluster for Regenerative Medicine, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bandar Putra Bertam, Penang, Kepala Batas, Malaysia.
| |
Collapse
|