1
|
Iszatt JJ, Larcombe AN, Chan HK, Stick SM, Garratt LW, Kicic A. Phage Therapy for Multi-Drug Resistant Respiratory Tract Infections. Viruses 2021; 13:v13091809. [PMID: 34578390 PMCID: PMC8472870 DOI: 10.3390/v13091809] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
The emergence of multi-drug resistant (MDR) bacteria is recognised today as one of the greatest challenges to public health. As traditional antimicrobials are becoming ineffective and research into new antibiotics is diminishing, a number of alternative treatments for MDR bacteria have been receiving greater attention. Bacteriophage therapies are being revisited and present a promising opportunity to reduce the burden of bacterial infection in this post-antibiotic era. This review focuses on the current evidence supporting bacteriophage therapy against prevalent or emerging multi-drug resistant bacterial pathogens in respiratory medicine and the challenges ahead in preclinical data generation. Starting with efforts to improve delivery of bacteriophages to the lung surface, the current developments in animal models for relevant efficacy data on respiratory infections are discussed before finishing with a summary of findings from the select human trials performed to date.
Collapse
Affiliation(s)
- Joshua J. Iszatt
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth 6845, Australia; (J.J.I.); (A.N.L.)
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia; (S.M.S.); (L.W.G.)
| | - Alexander N. Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth 6845, Australia; (J.J.I.); (A.N.L.)
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia; (S.M.S.); (L.W.G.)
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, University of Sydney, Camperdown 2006, Australia;
| | - Stephen M. Stick
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia; (S.M.S.); (L.W.G.)
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands 6009, Australia
| | - Luke W. Garratt
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia; (S.M.S.); (L.W.G.)
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth 6845, Australia; (J.J.I.); (A.N.L.)
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia; (S.M.S.); (L.W.G.)
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands 6009, Australia
- Correspondence:
| |
Collapse
|
2
|
Ling KM, Garratt LW, Gill EE, Lee AHY, Agudelo-Romero P, Sutanto EN, Iosifidis T, Rosenow T, Turvey SE, Lassmann T, Hancock REW, Kicic A, Stick SM. Rhinovirus Infection Drives Complex Host Airway Molecular Responses in Children With Cystic Fibrosis. Front Immunol 2020; 11:1327. [PMID: 32765492 PMCID: PMC7378398 DOI: 10.3389/fimmu.2020.01327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/26/2020] [Indexed: 01/22/2023] Open
Abstract
Early-life viral infections are responsible for pulmonary exacerbations that can contribute to disease progression in young children with cystic fibrosis (CF). The most common respiratory viruses detected in the CF airway are human rhinoviruses (RV), and augmented airway inflammation in CF has been attributed to dysregulated airway epithelial responses although evidence has been conflicting. Here, we exposed airway epithelial cells from children with and without CF to RV in vitro. Using RNA-Seq, we profiled the transcriptomic differences of CF and non-CF airway epithelial cells at baseline and in response to RV. There were only modest differences between CF and non-CF cells at baseline. In response to RV, there were 1,442 and 896 differentially expressed genes in CF and non-CF airway epithelial cells, respectively. The core antiviral responses in CF and non-CF airway epithelial cells were mediated through interferon signaling although type 1 and 3 interferon signaling, when measured, were reduced in CF airway epithelial cells following viral challenge consistent with previous reports. The transcriptional responses in CF airway epithelial cells were more complex than in non-CF airway epithelial cells with diverse over-represented biological pathways, such as cytokine signaling and metabolic and biosynthetic pathways. Network analysis highlighted that the differentially expressed genes of CF airway epithelial cells' transcriptional responses were highly interconnected and formed a more complex network than observed in non-CF airway epithelial cells. We corroborate observations in fully differentiated air–liquid interface (ALI) cultures, identifying genes involved in IL-1 signaling and mucin glycosylation that are only dysregulated in the CF airway epithelial response to RV infection. These data provide novel insights into the CF airway epithelial cells' responses to RV infection and highlight potential pathways that could be targeted to improve antiviral and anti-inflammatory responses in CF.
Collapse
Affiliation(s)
- Kak-Ming Ling
- Paediatrics, Medical School, Faculty of Healthy and Medical Science, The University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, Respiratory Research Centre, Nedlands, WA, Australia.,Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, WA, Australia
| | - Luke W Garratt
- Telethon Kids Institute, Respiratory Research Centre, Nedlands, WA, Australia.,Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Erin E Gill
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Amy H Y Lee
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Patricia Agudelo-Romero
- Telethon Kids Institute, Respiratory Research Centre, Nedlands, WA, Australia.,Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, WA, Australia
| | - Erika N Sutanto
- Telethon Kids Institute, Respiratory Research Centre, Nedlands, WA, Australia.,Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, WA, Australia
| | - Thomas Iosifidis
- Telethon Kids Institute, Respiratory Research Centre, Nedlands, WA, Australia.,Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, WA, Australia
| | - Tim Rosenow
- Telethon Kids Institute, Respiratory Research Centre, Nedlands, WA, Australia.,Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, WA, Australia
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Timo Lassmann
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, WA, Australia
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Anthony Kicic
- Telethon Kids Institute, Respiratory Research Centre, Nedlands, WA, Australia.,Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Occupation and Environment, School of Public Health, Curtin University, Perth, WA, Australia.,Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, WA, Australia
| | - Stephen M Stick
- Telethon Kids Institute, Respiratory Research Centre, Nedlands, WA, Australia.,Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
3
|
De Jong E, Garratt LW, Looi K, Lee AHY, Ling KM, Smith ML, Falsafi R, Sutanto EN, Hillas J, Iosifidis T, Martinovich KM, Shaw NC, Montgomery ST, Kicic-Starcevich E, Lannigan FJ, Vijayasekaran S, Hancock REW, Stick SM, Kicic A, Arest CF. Ivacaftor or lumacaftor/ivacaftor treatment does not alter the core CF airway epithelial gene response to rhinovirus. J Cyst Fibros 2020; 20:97-105. [PMID: 32684439 DOI: 10.1016/j.jcf.2020.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/25/2020] [Accepted: 07/06/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Aberrant responses by the cystic fibrosis airway epithelium during viral infection may underly the clinical observations. Whether CFTR modulators affect antiviral responses by CF epithelia is presently unknown. We tested the hypothesis that treatment of CF epithelial cells with ivacaftor (Iva) or ivacaftor/lumacaftor (Iva/Lum) would improve control of rhinovirus infection. METHODS Nineteen CF epithelial cultures (10 homozygous for p.Phe508del as CFTR Class 2, 9 p.Phe508del/p.Gly551Asp as Class 3) were infected with rhinovirus 1B at multiplicity of infection 12 for 24 h. Culture RNA and supernatants were harvested to assess gene and protein expression respectively. RESULTS RNA-seq analysis comparing rhinovirus infected cultures to control identified 796 and 629 differentially expressed genes for Class 2 and Class 3, respectively. This gene response was highly conserved when cells were treated with CFTR modulators and were predicted to be driven by the same interferon-pathway transcriptional regulators (IFNA, IFNL1, IFNG, IRF7, STAT1). Direct comparisons between treated and untreated infected cultures did not yield any differentially expressed genes for Class 3 and only 68 genes for Class 2. Changes were predominantly related to regulators of lipid metabolism and inflammation, aspects of epithelial biology known to be dysregulated in CF. In addition, CFTR modulators did not affect viral copy number, or levels of pro-inflammatory cytokines produced post-infection. CONCLUSIONS Though long-term clinical data is not yet available, results presented here suggest that first generation CFTR modulators do not interfere with core airway epithelial responses to rhinovirus infection. Future work should investigate the latest triple modulation therapies.
Collapse
Affiliation(s)
- Emma De Jong
- Telethon Kids Institute Respiratory Research Centre, Nedlands, 6009, Western Australia, Australia
| | - Luke W Garratt
- Telethon Kids Institute Respiratory Research Centre, Nedlands, 6009, Western Australia, Australia
| | - Kevin Looi
- Telethon Kids Institute Respiratory Research Centre, Nedlands, 6009, Western Australia, Australia; School of Public Health, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Amy H Y Lee
- Center for Microbial Diseases Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kak-Ming Ling
- Telethon Kids Institute Respiratory Research Centre, Nedlands, 6009, Western Australia, Australia; Division of Paediatrics Medical School, The University of Western Australia, Nedlands, 6009, Western Australia, Australia
| | - Maren L Smith
- Center for Microbial Diseases Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Reza Falsafi
- Center for Microbial Diseases Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erika N Sutanto
- Telethon Kids Institute Respiratory Research Centre, Nedlands, 6009, Western Australia, Australia; School of Public Health, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Jessica Hillas
- Telethon Kids Institute Respiratory Research Centre, Nedlands, 6009, Western Australia, Australia
| | - Thomas Iosifidis
- Telethon Kids Institute Respiratory Research Centre, Nedlands, 6009, Western Australia, Australia; School of Public Health, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Kelly M Martinovich
- Telethon Kids Institute Respiratory Research Centre, Nedlands, 6009, Western Australia, Australia; Center for Microbial Diseases Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicole C Shaw
- Telethon Kids Institute Respiratory Research Centre, Nedlands, 6009, Western Australia, Australia; Center for Microbial Diseases Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Samuel T Montgomery
- Telethon Kids Institute Respiratory Research Centre, Nedlands, 6009, Western Australia, Australia
| | | | - Francis J Lannigan
- School of Medicine, Notre Dame University, Fremantle, 6160, Western Australia, Australia
| | - Shyan Vijayasekaran
- Telethon Kids Institute Respiratory Research Centre, Nedlands, 6009, Western Australia, Australia
| | - Robert E W Hancock
- Center for Microbial Diseases Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen M Stick
- Telethon Kids Institute Respiratory Research Centre, Nedlands, 6009, Western Australia, Australia; Division of Paediatrics Medical School, The University of Western Australia, Nedlands, 6009, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine Medical School, The University of Western Australia, Nedlands, 6009, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, 6009, Western Australia, Australia
| | - Anthony Kicic
- Telethon Kids Institute Respiratory Research Centre, Nedlands, 6009, Western Australia, Australia; School of Public Health, Curtin University, Bentley, 6102, Western Australia, Australia; Division of Paediatrics Medical School, The University of Western Australia, Nedlands, 6009, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine Medical School, The University of Western Australia, Nedlands, 6009, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, 6009, Western Australia, Australia.
| | - C F Arest
- Telethon Kids Institute Respiratory Research Centre, Nedlands, 6009, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, 6009, Western Australia, Australia; Murdoch Children's Research Institute, Parkville, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Laucirica DR, Garratt LW, Kicic A. Progress in Model Systems of Cystic Fibrosis Mucosal Inflammation to Understand Aberrant Neutrophil Activity. Front Immunol 2020; 11:595. [PMID: 32318073 PMCID: PMC7154161 DOI: 10.3389/fimmu.2020.00595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/13/2020] [Indexed: 12/18/2022] Open
Abstract
In response to recurrent infection in cystic fibrosis (CF), powerful innate immune signals trigger polymorphonuclear neutrophil recruitment into the airway lumen. Exaggerated neutrophil proteolytic activity results in sustained inflammation and scarring of the airways. Consequently, neutrophils and their secretions are reliable clinical biomarkers of lung disease progression. As neutrophils are required to clear infection and yet a direct cause of airway damage, modulating adverse neutrophil activity while preserving their pathogen fighting function remains a key area of CF research. The factors that drive their pathological behavior are still under investigation, especially in early disease when aberrant neutrophil behavior first becomes evident. Here we examine the latest findings of neutrophils in pediatric CF lung disease and proposed mechanisms of their pathogenicity. Highlighted in this review are current and emerging experimental methods for assessing CF mucosal immunity and human neutrophil function in the laboratory.
Collapse
Affiliation(s)
- Daniel R Laucirica
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Luke W Garratt
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Anthony Kicic
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia.,Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia.,School of Public Health, Curtin University, Bentley, WA, Australia
| |
Collapse
|
5
|
Di Lullo AM, Scorza M, Amato F, Comegna M, Raia V, Maiuri L, Ilardi G, Cantone E, Castaldo G, Iengo M. An "ex vivo model" contributing to the diagnosis and evaluation of new drugs in cystic fibrosis. ACTA OTORHINOLARYNGOLOGICA ITALICA 2018; 37:207-213. [PMID: 27897275 PMCID: PMC5463510 DOI: 10.14639/0392-100x-1328] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/25/2016] [Indexed: 01/09/2023]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane regulator (CFTR) gene. About 2000 mutations have been described so far. We setup an ex vivo model of human nasal epithelial cells (HNECs) to study CF patients testing the effect of novel mutations and molecular therapies. We performed sampling (by brushing), followed by culture and analysis of HNECs using a series of molecular techniques. We performed 50 brushings from CF patients and controls. Using cultured cells, we: i) demonstrated the widely heterogeneous CFTR expression in patients and in controls; ii) defined the splicing effect of a CFTR mutation; iii) assessed the CFTR gating activity in patients bearing different mutations; iv) demonstrated that butyrate significantly enhances CFTR expression. Based on our data, we can conclude: 1) HNEC brushing is performed without anaesthesia and is well tolerated in all CF patients (children and adults); 2) HNECs can be preserved for up to 48 hours before culture allowings multicentre studies; 3) HNECs culture can be considered a suitable model to study the molecular effects of new CFTR gene mutations and/or uncertain meaning specific mutations of carriers; 4) an ex vivo model of HNECs may be used to evaluate, before human use, the effect of new drugs on patients’ cells bearing specific CFTR mutations; 5) the methodology is adequate for a quantitative measurement, by fluorescence, of the CFTR gating activity of the HNECs from patients with different genotypes identifying: a) CF patients bearing two severe mutations with an activity < 10% (compared to controls – 100%); b) CF patients bearing at least a mild mutation with an activity of 10-20%; c) CF carriers (heterozygous subjects) with an activity between 40-70%.
Collapse
Affiliation(s)
- A M Di Lullo
- Department of Neuroscience, Section of Otorhinolaryngology, University of Naples "Federico II", Italy.,CEINGE-Advanced Biotechnologies scarl, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Italy
| | - M Scorza
- CEINGE-Advanced Biotechnologies scarl, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Italy
| | - F Amato
- CEINGE-Advanced Biotechnologies scarl, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Italy
| | - M Comegna
- CEINGE-Advanced Biotechnologies scarl, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Italy
| | - V Raia
- Department of Translational Medical Sciences, University of Naples "Federico II", Italy
| | - L Maiuri
- Department of Science and Technology Innovation, University of Piemonte Orientale, Novara, Italy
| | - G Ilardi
- European Institute for Research in Cystic Fibrosis, San Raffaele Hospital, Milan, Italy
| | - E Cantone
- Department of Neuroscience, Section of Otorhinolaryngology, University of Naples "Federico II", Italy
| | - G Castaldo
- CEINGE-Advanced Biotechnologies scarl, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Italy
| | - M Iengo
- Department of Neuroscience, Section of Otorhinolaryngology, University of Naples "Federico II", Italy
| |
Collapse
|
6
|
Martinovich KM, Iosifidis T, Buckley AG, Looi K, Ling KM, Sutanto EN, Kicic-Starcevich E, Garratt LW, Shaw NC, Montgomery S, Lannigan FJ, Knight DA, Kicic A, Stick SM. Conditionally reprogrammed primary airway epithelial cells maintain morphology, lineage and disease specific functional characteristics. Sci Rep 2017; 7:17971. [PMID: 29269735 PMCID: PMC5740081 DOI: 10.1038/s41598-017-17952-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/04/2017] [Indexed: 01/19/2023] Open
Abstract
Current limitations to primary cell expansion led us to test whether airway epithelial cells derived from healthy children and those with asthma and cystic fibrosis (CF), co-cultured with an irradiated fibroblast feeder cell in F-medium containing 10 µM ROCK inhibitor could maintain their lineage during expansion and whether this is influenced by underlying disease status. Here, we show that conditionally reprogrammed airway epithelial cells (CRAECs) can be established from both healthy and diseased phenotypes. CRAECs can be expanded, cryopreserved and maintain phenotypes over at least 5 passages. Population doublings of CRAEC cultures were significantly greater than standard cultures, but maintained their lineage characteristics. CRAECs from all phenotypes were also capable of fully differentiating at air-liquid interface (ALI) and maintained disease specific characteristics including; defective CFTR channel function cultures and the inability to repair wounds. Our findings indicate that CRAECs derived from children maintain lineage, phenotypic and importantly disease-specific functional characteristics over a specified passage range.
Collapse
Affiliation(s)
- Kelly M Martinovich
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Thomas Iosifidis
- School of Paediatrics and Child Health, The University of Western Australia, Crawley, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Alysia G Buckley
- Centre of Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, Western Australia, Australia
| | - Kevin Looi
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Kak-Ming Ling
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Erika N Sutanto
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Elizabeth Kicic-Starcevich
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Luke W Garratt
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Nicole C Shaw
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Samuel Montgomery
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Francis J Lannigan
- School of Paediatrics and Child Health, The University of Western Australia, Crawley, Western Australia, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Anthony Kicic
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia. .,School of Paediatrics and Child Health, The University of Western Australia, Crawley, Western Australia, Australia. .,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Western Australia, Australia. .,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia. .,Occupation and Environment, School of Public Health, Curtin University, Perth, Western Australia, Australia.
| | - Stephen M Stick
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia.,School of Paediatrics and Child Health, The University of Western Australia, Crawley, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| |
Collapse
|
7
|
Guimbellot J, Sharma J, Rowe SM. Toward inclusive therapy with CFTR modulators: Progress and challenges. Pediatr Pulmonol 2017; 52:S4-S14. [PMID: 28881097 PMCID: PMC6208153 DOI: 10.1002/ppul.23773] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/29/2017] [Indexed: 12/29/2022]
Abstract
Cystic fibrosis is caused by gene mutations that result in an abnormal Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein on the surface of cells. CFTR modulators are a novel class of drugs that directly target the molecular defect. CFTR modulators include potentiators that result in improved activity of the channel; correctors that help the protein traffic to the cell surface properly; and readthrough agents that restore full-length CFTR by suppression of premature termination codons, among other novel classes more recently established. While some of these drugs, CFTR potentiators in particular, have provided remarkable improvements for CF patients, others have yet to achieve profoundly improved outcomes, and many CF patients are not yet impacted by CFTR modulators due to lack of knowledge regarding susceptibility of their mutations to treatment. One limitation to expanding these types of therapies to the maximum number of patients with CF is the lack of rigorously validated clinical biomarkers that can determine efficacy on an individual basis, as well as few pre-clinical tools that can predict whether an individual with a rare combination of mutant alleles will respond to a particular CFTR modulator regimen. In this review, we discuss the various groups of CFTR modulators and their status in clinical development, as well as address the current literature on biomarkers, pre-clinical cell-based tools, and the role of pharmacometrics in creating therapeutic strategies to improve the lives of all patients with cystic fibrosis, regardless of their specific mutation.
Collapse
Affiliation(s)
- Jennifer Guimbellot
- Departments of Pediatrics, The University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Jyoti Sharma
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama
- Cell Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Steven M. Rowe
- Departments of Pediatrics, The University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama
- Cell Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama
- Departments of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
8
|
The AREST CF experience in biobanking - More than just tissues, tubes and time. J Cyst Fibros 2017; 16:622-627. [PMID: 28803050 DOI: 10.1016/j.jcf.2017.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 11/24/2022]
Abstract
Research to further improve outcomes for people with CF is dependent upon well characterised, archived and accessible clinical specimens. The recent article by Beekman et al. published in Journal of Cystic Fibrosis summarised a scientific meeting at the 13th ECFS Basic Science Conference. This meeting discussed how well-annotated, clinical biobanks for CF could be established in Europe to meet the needs of therapeutic development. The Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST CF) has conducted biobanking of CF research and clinical specimens since the late 1990s and is custodian of the most comprehensive paediatric CF biobank in the world that focuses on the first years of life. This short communication will describe the approach undertaken by AREST CF in establishing a clinical specimen biobank.
Collapse
|
9
|
Garratt LW, Sutanto EN, Ling KM, Looi K, Iosifidis T, Martinovich KM, Shaw NC, Buckley AG, Kicic-Starcevich E, Lannigan FJ, Knight DA, Stick SM, Kicic A. Alpha-1 Antitrypsin Mitigates the Inhibition of Airway Epithelial Cell Repair by Neutrophil Elastase. Am J Respir Cell Mol Biol 2016. [PMID: 26221769 DOI: 10.1165/rcmb.2015-0074oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Neutrophil elastase (NE) activity is associated with many destructive lung diseases and is a predictor for structural lung damage in early cystic fibrosis (CF), which suggests normal maintenance of airway epithelium is prevented by uninhibited NE. However, limited data exist on how the NE activity in airways of very young children with CF affects function of the epithelia. The aim of this study was to determine if NE activity could inhibit epithelial homeostasis and repair and whether any functional effect was reversible by antiprotease alpha-1 antitrypsin (α1AT) treatment. Viability, inflammation, apoptosis, and proliferation were assessed in healthy non-CF and CF pediatric primary airway epithelial cells (pAECnon-CF and pAECCF, respectively) during exposure to physiologically relevant NE. The effect of NE activity on pAECCF wound repair was also assessed. We report that viability after 48 hours was significantly decreased by 100 nM NE in pAECnon-CF and pAECCF owing to rapid cellular detachment that was accompanied by inflammatory cytokine release. Furthermore, both phenotypes initiated an apoptotic response to 100 nM NE, whereas ≥ 50 nM NE activity significantly inhibited the proliferative capacity of cultures. Similar concentrations of NE also significantly inhibited wound repair of pAECCF, but this effect was reversed by the addition of α1AT. Collectively, our results demonstrate free NE activity is deleterious for epithelial homeostasis and support the hypothesis that proteases in the airway contribute directly to CF structural lung disease. Our results also highlight the need to investigate antiprotease therapies in early CF disease in more detail.
Collapse
Affiliation(s)
- Luke W Garratt
- 1 School of Paediatrics and Child Health.,2 Telethon Kids Institute
| | - Erika N Sutanto
- 2 Telethon Kids Institute.,3 Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | | | - Kevin Looi
- 1 School of Paediatrics and Child Health
| | - Thomas Iosifidis
- 1 School of Paediatrics and Child Health.,4 Centre for Cell Therapy and Regenerative Medicine, and
| | | | | | - Alysia G Buckley
- 2 Telethon Kids Institute.,5 Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Nedlands, Perth, Western Australia, Australia
| | - Elizabeth Kicic-Starcevich
- 2 Telethon Kids Institute.,3 Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | - Francis J Lannigan
- 1 School of Paediatrics and Child Health.,6 School of Medicine, Notre Dame University, Fremantle, Perth, Western Australia, Australia
| | - Darryl A Knight
- 7 School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,8 Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,9 Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen M Stick
- 1 School of Paediatrics and Child Health.,2 Telethon Kids Institute.,4 Centre for Cell Therapy and Regenerative Medicine, and.,3 Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | - Anthony Kicic
- 1 School of Paediatrics and Child Health.,2 Telethon Kids Institute.,4 Centre for Cell Therapy and Regenerative Medicine, and.,3 Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia.,10 Department of Respiratory Medicine, Royal Children's Hospital, Parkville, Melbourne, Victoria, Australia; and.,11 Murdoch Childrens Research Institute, Parkville, Melbourne, Victoria, Australia
| | | |
Collapse
|