1
|
Leenaars CH, Vries RBD, Reijmer J, Holthaus D, Visser D, Heming A, Elzinga J, Kempkes RW, Beumer W, Punt C, Meijboom FL, Ritskes-Hoitinga M. Animal models for cystic fibrosis: a systematic search and mapping review of the literature. Part 2: nongenetic models. Lab Anim 2021; 55:307-316. [PMID: 33557683 DOI: 10.1177/0023677221990688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Various animal models are available to study cystic fibrosis (CF). These models may help to enhance our understanding of the pathology and contribute to the development of new treatments. We systematically searched all publications on CF animal models. Because of the large number of models retrieved, we split this mapping review into two parts. Previously, we presented the genetic CF animal models. In this paper we present the nongenetic CF animal models. While genetic animal models may, in theory, be preferable for genetic diseases, the phenotype of a genetic model does not automatically resemble human disease. Depending on the research question, other animal models may thus be more informative.We searched Pubmed and Embase and identified 12,303 unique publications (after duplicate removal). All references were screened for inclusion by two independent reviewers. The genetic animal models for CF (from 636 publications) were previously described. The non-genetic CF models (from 189 publications) are described in this paper, grouped by model type: infection-based, pharmacological, administration of human materials, xenografts and other. As before for the genetic models, an overview of basic model characteristics and outcome measures is provided. This CF animal model overview can be the basis for an objective, evidence-based model choice for specific research questions. Besides, it can help to retrieve relevant background literature on outcome measures of interest.
Collapse
Affiliation(s)
- Cathalijn Hc Leenaars
- SYRCLE, Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, The Netherlands.,Faculty of Veterinary Medicine, Department of Animals in Science and Society, Utrecht University, The Netherlands.,Institute for Laboratory Animal Science, Hannover Medical School, Germany
| | - Rob Bm de Vries
- SYRCLE, Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, The Netherlands
| | - Joey Reijmer
- SYRCLE, Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, The Netherlands
| | - David Holthaus
- SYRCLE, Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, The Netherlands
| | - Damian Visser
- SYRCLE, Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, The Netherlands
| | - Anna Heming
- SYRCLE, Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, The Netherlands
| | - Janneke Elzinga
- SYRCLE, Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, The Netherlands
| | - Rosalie Wm Kempkes
- SYRCLE, Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, The Netherlands
| | | | - Carine Punt
- ProQR Therapeutics NV,Leiden, the Netherlands; Present position: BunyaVax BV, Lelystad, The Netherlands
| | - Franck Lb Meijboom
- Faculty of Veterinary Medicine, Department of Animals in Science and Society, Utrecht University, The Netherlands
| | - Merel Ritskes-Hoitinga
- SYRCLE, Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, The Netherlands.,Department of Clinical Medicine, Aarhus University, Denmark
| |
Collapse
|
2
|
Killian LN, Gardier RW. Subacute reserpine treatment reveals preferential coupling between the M3 muscarinic receptor subtype and phosphatidylinositol turnover. Life Sci 1992; 50:821-7. [PMID: 1740966 DOI: 10.1016/0024-3205(92)90188-u] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Muscarinic receptors in the rat cerebral cortex, cardiac atria and vas deferens were identified, quantitated, and characterized relative to phosphatidylinositol (PI) turnover as the functional response to stimulation of specific receptor subtypes. Receptor densities as determined by 3H-QNB binding were ranked: cerebral cortex greater than vas deferens greater than heart. Using displacement of 3H-QNB binding by the selective M1 and M2 muscarinic receptor antagonists pirenzepine and 11[[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5,11-dihydro- 6H-pyrido [2,3-b] [1,4] benzodiazepine-6-one (AF-DX 116) respectively, heterogeneous populations were found in the cerebral cortex and vas deferens. The M1 receptor subtype predominated in the former and the M2 predominated in the latter. An homogeneous M2 receptor population was present in the heart. Methacholine-stimulated accumulation of 3H inositol-1-phosphate was greater in the vas deferens than in the cerebral cortex, whereas PI turnover was not enhanced in cardiac atria. Reserpine treatment of rats (0.5 mg kg-1 day-1 for 7 days) increased muscarinic receptor density in the vas deferens coincident with a shift in the low affinity pKi for AF-DX 116 to a value comparable to high affinity binding, and abolished the enhanced PI hydrolysis. In the cerebral cortex, reserpine treatment shifted only the early portion of the methacholine dose-response curve to the right. These results are judged to be supportive of preferential coupling between the M3 muscarinic receptor subtype and PI turnover.
Collapse
Affiliation(s)
- L N Killian
- Department of Pharmacology and Toxicology, Wright State University School of Medicine, Dayton, Ohio 45435
| | | |
Collapse
|