1
|
Wu SH, Rethi L, Pan WY, Nguyen HT, Chuang AEY. Emerging horizons and prospects of polysaccharide-constructed gels in the realm of wound healing. Colloids Surf B Biointerfaces 2024; 235:113759. [PMID: 38280240 DOI: 10.1016/j.colsurfb.2024.113759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/26/2023] [Accepted: 01/13/2024] [Indexed: 01/29/2024]
Abstract
Polysaccharides, with the abundant availability, biodegradability, and inherent safety, offer a vast array of promising applications. Leveraging the remarkable attributes of polysaccharides, biomimetic and multifunctional hydrogels have emerged as a compelling avenue for efficacious wound dressing. The gels emulate the innate extracellular biomatrix as well as foster cellular proliferation. The distinctive structural compositions and profusion of functional groups within polysaccharides confer excellent physical/chemical traits as well as distinct restorative involvements. Gels crafted from polysaccharide matrixes serve as a robust defense against bacterial threats, effectively shielding wounds from harm. This comprehensive review delves into wound physiology, accentuating the significance of numerous polysaccharide-based gels in the wound healing context. The discourse encompasses an exploration of polysaccharide hydrogels tailored for diverse wound types, along with an examination of various therapeutic agents encapsulated within hydrogels to facilitate wound repair, incorporating recent patent developments. Within the scope of this manuscript, the perspective of these captivating gels for promoting optimal healing of wounds is vividly depicted. Nevertheless, the pursuit of knowledge remains ongoing, as further research is warranted to bioengineer progressive polysaccharide gels imbued with adaptable features. Such endeavors hold the promise of unlocking substantial potential within the realm of wound healing, propelling us toward multifaceted and sophisticated solutions.
Collapse
Affiliation(s)
- Shen-Han Wu
- Taipei Medical University Hospital, Taipei 11031, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Wen-Yu Pan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235603, Taiwan; Ph.D Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235603, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
2
|
Bektas C, Mao Y. Hydrogel Microparticles for Bone Regeneration. Gels 2023; 10:28. [PMID: 38247752 PMCID: PMC10815488 DOI: 10.3390/gels10010028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Hydrogel microparticles (HMPs) stand out as promising entities in the realm of bone tissue regeneration, primarily due to their versatile capabilities in delivering cells and bioactive molecules/drugs. Their significance is underscored by distinct attributes such as injectability, biodegradability, high porosity, and mechanical tunability. These characteristics play a pivotal role in fostering vasculature formation, facilitating mineral deposition, and contributing to the overall regeneration of bone tissue. Fabricated through diverse techniques (batch emulsion, microfluidics, lithography, and electrohydrodynamic spraying), HMPs exhibit multifunctionality, serving as vehicles for drug and cell delivery, providing structural scaffolding, and functioning as bioinks for advanced 3D-printing applications. Distinguishing themselves from other scaffolds like bulk hydrogels, cryogels, foams, meshes, and fibers, HMPs provide a higher surface-area-to-volume ratio, promoting improved interactions with the surrounding tissues and facilitating the efficient delivery of cells and bioactive molecules. Notably, their minimally invasive injectability and modular properties, offering various designs and configurations, contribute to their attractiveness for biomedical applications. This comprehensive review aims to delve into the progressive advancements in HMPs, specifically for bone regeneration. The exploration encompasses synthesis and functionalization techniques, providing an understanding of their diverse applications, as documented in the existing literature. The overarching goal is to shed light on the advantages and potential of HMPs within the field of engineering bone tissue.
Collapse
Affiliation(s)
| | - Yong Mao
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA;
| |
Collapse
|
3
|
Milinković Budinčić J, Petrović L, Đekić L, Aleksić M, Fraj J, Popović S, Bučko S, Katona J, Spasojević L, Škrbić J, Malenović A. Chitosan/Sodium Dodecyl Sulfate Complexes for Microencapsulation of Vitamin E and Its Release Profile-Understanding the Effect of Anionic Surfactant. Pharmaceuticals (Basel) 2021; 15:ph15010054. [PMID: 35056111 PMCID: PMC8779650 DOI: 10.3390/ph15010054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 01/18/2023] Open
Abstract
Microencapsulation of bioactive substances is a common strategy for their protection and release rate control. The use of chitosan (Ch) is particularly promising due to its abundance, biocompatibility, and interaction with anionic surfactants to form complexes of different characteristics with relevance for use in microcapsule wall design. In this study, Ch/sodium dodecyl sulfate (SDS) microcapsules, without and with cross-linking agent (formaldehyde (FA) or glutaraldehyde (GA)), were obtained by the spray drying of vitamin E loaded oil-in-water emulsion. All of the microcapsules had good stability during the drying process. Depending on the composition, their product yield, moisture content, and encapsulation efficiency varied between 11-34%, 1.14-1.62%, and 94-126%, respectively. SEM and FTIR analysis results indicate that SDS as well as cross-linkers significantly affected the microcapsule wall properties. The profiles of in vitro vitamin E release from the investigated microcapsules fit with the Korsmeyer-Peppas model (r2 > 0.9). The chemical structure of the anionic surfactant was found to have a significant effect on the vitamin E release mechanism. Ch/SDS coacervates may build a microcapsule wall without toxic crosslinkers. This enabled the combined diffusion/swelling based release mechanism of the encapsulated lipophilic substance, which can be considered favorable for utilization in food and pharmaceutical products.
Collapse
Affiliation(s)
- Jelena Milinković Budinčić
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (L.P.); (M.A.); (J.F.)
- Correspondence:
| | - Lidija Petrović
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (L.P.); (M.A.); (J.F.)
| | - Ljiljana Đekić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia;
| | - Milijana Aleksić
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (L.P.); (M.A.); (J.F.)
| | - Jadranka Fraj
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (L.P.); (M.A.); (J.F.)
| | - Senka Popović
- Department of Food Preservation Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Sandra Bučko
- Department of Applied and Engineering Chemistry, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (S.B.); (J.K.); (L.S.); (J.Š.)
| | - Jaroslav Katona
- Department of Applied and Engineering Chemistry, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (S.B.); (J.K.); (L.S.); (J.Š.)
| | - Ljiljana Spasojević
- Department of Applied and Engineering Chemistry, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (S.B.); (J.K.); (L.S.); (J.Š.)
| | - Jelena Škrbić
- Department of Applied and Engineering Chemistry, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (S.B.); (J.K.); (L.S.); (J.Š.)
| | - Anđelija Malenović
- Department of Drug Analysis, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia;
| |
Collapse
|
4
|
Sivanesan I, Gopal J, Muthu M, Shin J, Mari S, Oh J. Green Synthesized Chitosan/Chitosan Nanoforms/Nanocomposites for Drug Delivery Applications. Polymers (Basel) 2021; 13:2256. [PMID: 34301013 PMCID: PMC8309384 DOI: 10.3390/polym13142256] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
Chitosan has become a highlighted polymer, gaining paramount importance and research attention. The fact that this valuable polymer can be extracted from food industry-generated shell waste gives it immense value. Chitosan, owing to its biological and physicochemical properties, has become an attractive option for biomedical applications. This review briefly runs through the various methods involved in the preparation of chitosan and chitosan nanoforms. For the first time, we consolidate the available scattered reports on the various attempts towards greens synthesis of chitosan, chitosan nanomaterials, and chitosan nanocomposites. The drug delivery applications of chitosan and its nanoforms have been reviewed. This review points to the lack of systematic research in the area of green synthesis of chitosan. Researchers have been concentrating more on recovering chitosan from marine shell waste through chemical and synthetic processes that generate toxic wastes, rather than working on eco-friendly green processes-this is projected in this review. This review draws the attention of researchers to turn to novel and innovative green processes. More so, there are scarce reports on the application of green synthesized chitosan nanoforms and nanocomposites towards drug delivery applications. This is another area that deserves research focus. These have been speculated and highlighted as future perspectives in this review.
Collapse
Affiliation(s)
- Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| | - Judy Gopal
- Laboratory of Neo Natural Farming, Chunnampet, Tamil Nadu 603 401, India
| | - Manikandan Muthu
- Laboratory of Neo Natural Farming, Chunnampet, Tamil Nadu 603 401, India
| | - Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Selvaraj Mari
- Department of Chemistry, Guru Nanak College, Chennai 600 042, India
| | - Jaewook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
5
|
Zhang K, Xu Y, Lu L, Shi C, Huang Y, Mao Z, Duan C, Ren X, Guo Y, Huang C. Hydrodynamic cavitation: A feasible approach to intensify the emulsion cross-linking process for chitosan nanoparticle synthesis. ULTRASONICS SONOCHEMISTRY 2021; 74:105551. [PMID: 33894557 PMCID: PMC8091060 DOI: 10.1016/j.ultsonch.2021.105551] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/16/2021] [Accepted: 04/06/2021] [Indexed: 05/08/2023]
Abstract
Chitosan nanoparticles (NPs) exhibit great potential in drug-controlled release systems. A controlled hydrodynamic cavitation (HC) technique was developed to intensify the emulsion crosslinking process for the synthesis of chitosan NPs. Experiments were performed using a circular venturi and under varying operating conditions, i.e., types of oil, addition mode of glutaraldehyde (Glu) solution, inlet pressure (Pin), and rheological properties of chitosan solution. Palm oil was more appropriate for use as the oil phase for the HC-intensified process than the other oil types. The addition mode of water-in-oil (W/O) emulsion containing Glu (with Span 80) was more favorable than the other modes for obtaining a narrow distribution of chitosan NPs. The minimum size of NPs with polydispersity index of 0.342 was 286.5 nm, and the maximum production yield (Py) could reach 47.26%. A positive correlation was found between the size of NPs and the droplet size of W/O emulsion containing chitosan at increasing Pin. Particle size, size distribution, and the formation of NPs were greatly dependent on the rheological properties of the chitosan solution. Fourier transform infrared spectroscopy (FTIR) analysis indicated that the molecular structure of palm oil was unaffected by HC-induced effects. Compared with ultrasonic horn, stirring-based, and conventional drop-by-drop processes, the application of HC to intensify the emulsion crosslinking process allowed the preparation of a finer and a narrower distribution of chitosan NPs in a more energy-efficient manner. The novel route developed in this work is a viable option for chitosan NP synthesis.
Collapse
Affiliation(s)
- Kunming Zhang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China.
| | - Yun Xu
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China
| | - Lijin Lu
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China
| | - Changcan Shi
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Yongchun Huang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China; Province and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004, China.
| | - Zhijuan Mao
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China
| | - Chao Duan
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China
| | - Xian'e Ren
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China
| | - Yan Guo
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China
| | - Chengdu Huang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China
| |
Collapse
|
6
|
Kumar S, Lazau E, Kim C, N Thadhani N, R Prausnitz M. Serum Protects Cells and Increases Intracellular Delivery of Molecules by Nanoparticle-Mediated Photoporation. Int J Nanomedicine 2021; 16:3707-3724. [PMID: 34103912 PMCID: PMC8180297 DOI: 10.2147/ijn.s307027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/12/2021] [Indexed: 12/03/2022] Open
Abstract
Introduction Intracellular delivery of molecules is central to applications in biotechnology, medicine, and basic research. Nanoparticle-mediated photoporation using carbon black nanoparticles exposed to pulsed, near-infrared laser irradiation offers a physical route to create transient cell membrane pores, enabling intracellular delivery. However, nanoparticle-mediated photoporation, like other physical intracellular delivery technologies, necessitates a trade-off between achieving efficient uptake of exogenous molecules and maintaining high cell viability. Methods In this study, we sought to shift this balance by adding serum to cells during nanoparticle-mediated photoporation as a viability protectant. DU-145 prostate cancer cells and human dermal fibroblasts were exposed to laser irradiation in the presence of carbon black (CB) nanoparticles and other formulation additives, including fetal bovine serum (FBS) and polymers. Results Our studies showed that FBS can protect cells from viability loss, even at high-fluence laser irradiation conditions that lead to high levels of intracellular delivery in two different mammalian cell types. Further studies revealed that full FBS was not needed: viability protection was achieved with denatured FBS, with just the high molecular weight fraction of FBS (>30 kDa), or even with individual proteins like albumin or hemoglobin. Finally, we found that viability protection was also obtained using certain neutral water-soluble polymers, including Pluronic F127, polyvinylpyrrolidone, poly(2-ethyl-2-oxazoline), and polyethylene glycol, which were more effective at increased concentration, molecular weight, or hydrophobicity. Conclusion Altogether, these findings suggest an interaction between amphiphilic domains of polymers with the cell membrane to help cells maintain viability, possibly by facilitating transmembrane pore closure. In this way, serum components or synthetic polymers can be used to increase intracellular delivery by nanoparticle-mediated photoporation while maintaining high cell viability.
Collapse
Affiliation(s)
- Simple Kumar
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Eunice Lazau
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30318, USA
| | - Carter Kim
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30318, USA
| | - Naresh N Thadhani
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
7
|
Budinčić JM, Petrović L, Đekić L, Fraj J, Bučko S, Katona J, Spasojević L. Study of vitamin E microencapsulation and controlled release from chitosan/sodium lauryl ether sulfate microcapsules. Carbohydr Polym 2021; 251:116988. [PMID: 33142560 DOI: 10.1016/j.carbpol.2020.116988] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 11/17/2022]
Abstract
Potential benefit of microencapsulation is its ability to deliver and protect incorporated ingredients such as vitamin E. Microcapsule wall properties can be changed by adding of coss-linking agents that are usually considered toxic for application. The microcapsules were prepared by a spray-drying technique using coacervation method, by depositing the coacervate formed in the mixture of chitosan and sodium lauryl ether sulfate to the oil/water interface. All obtained microcapsules suspensions had slightly lower mean diameter compared to the starting emulsion (6.85 ± 0.213 μm), which shows their good stability during the drying process. The choice and absence of cross-linking agents had influence on kinetics of vitamin E release. Encapsulation efficiency of microcapsules without cross-linking agent was 73.17 ± 0.64 %. This study avoided the use of aldehydes as cross-linking agents and found that chitosan/SLES complex can be used as wall material for the microencapsulation of hydrophobic active molecules in cosmetic industry.
Collapse
Affiliation(s)
- Jelena Milinković Budinčić
- Faculty of Technology Novi Sad, University of Novi Sad, Department of Biotechnology and Pharmaceutical Engineering, Serbia.
| | - Lidija Petrović
- Faculty of Technology Novi Sad, University of Novi Sad, Department of Biotechnology and Pharmaceutical Engineering, Serbia
| | - Ljiljana Đekić
- Faculty of Pharmacy, University of Belgrade, Department of Pharmaceutical Technology and Cosmetology, Serbia
| | - Jadranka Fraj
- Faculty of Technology Novi Sad, University of Novi Sad, Department of Biotechnology and Pharmaceutical Engineering, Serbia
| | - Sandra Bučko
- Faculty of Technology Novi Sad, University of Novi Sad, Department of Biotechnology and Pharmaceutical Engineering, Serbia
| | - Jaroslav Katona
- Faculty of Technology Novi Sad, University of Novi Sad, Department of Biotechnology and Pharmaceutical Engineering, Serbia
| | - Ljiljana Spasojević
- Faculty of Technology Novi Sad, University of Novi Sad, Department of Biotechnology and Pharmaceutical Engineering, Serbia
| |
Collapse
|
8
|
Chitosan Biomedical Applications for the Treatment of Viral Disease: A Data Mining Model Using Bibliometric Predictive Intelligence. J CHEM-NY 2020. [DOI: 10.1155/2020/6612034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chitosan has attracted increasing attention from researchers in the pharmaceutical and biomedical fields as a potential agent for the prevention and treatment of infectious diseases. However, identifying the development of emerging technologies related to this biopolymer is difficult, especially for newcomers trying to understand the research streams. In this work, we designed and implemented a research process based on a bibliometric predictive intelligence model. Our aim is to glean detailed scientific and technological trends through an analysis of publications that include certain word phrases and related research areas. Cross correlation, factor mapping, and the calculation of “emergent” scores were also used. A total of 1,612 scientific papers on chitosan technology related to viral disease treatment published between 2010 and 2020 were retrieved from the Web of Science. Results from the keyword modelling quantitatively highlight three major frontier research and development topic groups: drug delivery and adjuvants, vaccines and immune response, and tissue engineering. More specifically, the emergent scores show that much of the chitosan-based treatment for viral diseases is in the in vitro stage of development. Most chitosan applications are in pharmacology/pharmacy and immunology. All results were confirmed by experts in the field, which indicates that the validated process can be applied to other fields of interest.
Collapse
|
9
|
l-Ascorbic Acid and Thymoquinone Dual-Loaded Palmitoyl-Chitosan Nanoparticles: Improved Preparation Method, Encapsulation and Release Efficiency. Processes (Basel) 2020. [DOI: 10.3390/pr8091040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Encapsulation of dual compounds of different characters (hydrophilic and hydrophobic) in single nanoparticles carrier could reach the site of action more accurately with the synergistic effect but it is less investigated. In our previous findings, combined-compounds encapsulation and delivery from chitosan nanoparticles were impaired by the hydrophilicity of chitosan. Therefore, hydrophobic modification on chitosan with palmitic acid was conducted in this study to provide an amphiphilic environment for better encapsulation of antioxidants; hydrophobic thymoquinone (TQ) and hydrophilic l-ascorbic acid (LAA). Palmitoyl chitosan nanoparticles (PCNPs) co-loaded with TQ and LAA (PCNP-TQ-LAA) were synthesized via the ionic gelation method. Few characterizations were conducted involving nanosizer, Fourier-transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM). UV–VIS spectrophotometry was used to analyze the encapsulation and release efficiency of the compounds in PCNPs. Successfully modified PCNP-TQ-LAA had an average particle size of 247.7 ± 24.0 nm, polydispersity index (PDI) of 0.348 ± 0.043 and zeta potential of 19.60 ± 1.27 mV. Encapsulation efficiency of TQ and LAA in PCNP-TQ-LAA increased to 64.9 ± 5.3% and 90.0 ± 0%, respectively. TQ and LAA in PCNP-TQ-LAA system showed zero-order release kinetics, with a release percentage of 97.5% and 36.1%, respectively. Improved preparation method, encapsulation and release efficiency in this study are anticipated to be beneficial for polymeric nanocarrier development.
Collapse
|
10
|
Auriemma G, Russo P, Del Gaudio P, García-González CA, Landín M, Aquino RP. Technologies and Formulation Design of Polysaccharide-Based Hydrogels for Drug Delivery. Molecules 2020; 25:E3156. [PMID: 32664256 PMCID: PMC7397281 DOI: 10.3390/molecules25143156] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 01/31/2023] Open
Abstract
Polysaccharide-based hydrogel particles (PbHPs) are very promising carriers aiming to control and target the release of drugs with different physico-chemical properties. Such delivery systems can offer benefits through the proper encapsulation of many drugs (non-steroidal and steroidal anti-inflammatory drugs, antibiotics, etc) ensuring their proper release and targeting. This review discusses the different phases involved in the production of PbHPs in pharmaceutical technology, such as droplet formation (SOL phase), sol-gel transition of the droplets (GEL phase) and drying, as well as the different methods available for droplet production with a special focus on prilling technique. In addition, an overview of the various droplet gelation methods with particular emphasis on ionic cross-linking of several polysaccharides enabling the formation of particles with inner highly porous network or nanofibrillar structure is given. Moreover, a detailed survey of the different inner texture, in xerogels, cryogels or aerogels, each with specific arrangement and properties, which can be obtained with different drying methods, is presented. Various case studies are reported to highlight the most appropriate application of such systems in pharmaceutical field. We also describe the challenges to be faced for the breakthrough towards clinic studies and, finally, the market, focusing on the useful approach of safety-by-design (SbD).
Collapse
Affiliation(s)
- Giulia Auriemma
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I—84084 Fisciano (SA), Italy; (G.A.); (P.R.); (P.D.G.)
| | - Paola Russo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I—84084 Fisciano (SA), Italy; (G.A.); (P.R.); (P.D.G.)
| | - Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I—84084 Fisciano (SA), Italy; (G.A.); (P.R.); (P.D.G.)
| | - Carlos A. García-González
- Department of Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (C.A.G.-G.); (M.L.)
| | - Mariana Landín
- Department of Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (C.A.G.-G.); (M.L.)
| | - Rita Patrizia Aquino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I—84084 Fisciano (SA), Italy; (G.A.); (P.R.); (P.D.G.)
| |
Collapse
|
11
|
Seeto WJ, Tian Y, Pradhan S, Kerscher P, Lipke EA. Rapid Production of Cell-Laden Microspheres Using a Flexible Microfluidic Encapsulation Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902058. [PMID: 31468632 DOI: 10.1002/smll.201902058] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/09/2019] [Indexed: 06/10/2023]
Abstract
This study establishes a novel microfluidic platform for rapid encapsulation of cells at high densities in photocrosslinkable microspherical hydrogels including poly(ethylene glycol)-diacrylate, poly(ethylene glycol)-fibrinogen, and gelatin methacrylate. Cell-laden hydrogel microspheres are advantageous for many applications from drug screening to regenerative medicine. Employing microfluidic systems is considered the most efficient method for scale-up production of uniform microspheres. However, existing platforms have been constrained by traditional microfabrication techniques for device fabrication, restricting microsphere diameter to below 200 µm and making iterative design changes time-consuming and costly. Using a new molding technique, the microfluidic device employs a modified T-junction design with readily adjustable channel sizes, enabling production of highly uniform microspheres with cell densities (10-60 million cells mL-1 ) and a wide range of diameters (300-1100 µm), which are critical for realizing downstream applications, through rapid photocrosslinking (≈1 s per microsphere). Multiple cell types are encapsulated at rates of up to 1 million cells per min, are evenly distributed throughout the microspheres, and maintain high viability and appropriate cellular activities in long-term culture. This microfluidic encapsulation platform is a valuable and readily adoptable tool for numerous applications, including supporting injectable cell therapy, bioreactor-based cell expansion and differentiation, and high throughput tissue sphere-based drug testing assays.
Collapse
Affiliation(s)
- Wen J Seeto
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Yuan Tian
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Shantanu Pradhan
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Petra Kerscher
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Elizabeth A Lipke
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| |
Collapse
|
12
|
Ganesan K, Budtova T, Ratke L, Gurikov P, Baudron V, Preibisch I, Niemeyer P, Smirnova I, Milow B. Review on the Production of Polysaccharide Aerogel Particles. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2144. [PMID: 30384442 PMCID: PMC6265924 DOI: 10.3390/ma11112144] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/10/2018] [Accepted: 10/23/2018] [Indexed: 02/04/2023]
Abstract
A detailed study of the production of polysaccharide aerogel (bio-aerogel) particles from lab to pilot scale is surveyed in this article. An introduction to various droplets techniques available in the market is given and compared with the lab scale production of droplets using pipettes and syringes. An overview of the mechanisms of gelation of polysaccharide solutions together with non-solvent induced phase separation option is then discussed in the view of making wet particles. The main steps of particle recovery and solvent exchange are briefly described in order to pass through the final drying process. Various drying processes are overviewed and the importance of supercritical drying is highlighted. In addition, we present the characterization techniques to analyse the morphology and properties of the aerogels. The case studies of bio-aerogel (agar, alginate, cellulose, chitin, κ-carrageenan, pectin and starch) particles are reviewed. Potential applications of polysaccharide aerogel particles are briefly given. Finally, the conclusions summarize the prospects of the potential scale-up methods for producing bio-aerogel particles.
Collapse
Affiliation(s)
- Kathirvel Ganesan
- German Aerospace Center, Institute of Materials Research, Linder Hoehe, 51147 Cologne, Germany.
| | - Tatiana Budtova
- MINES Paris Tech, PSL Research University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France.
| | - Lorenz Ratke
- German Aerospace Center, Institute of Materials Research, Linder Hoehe, 51147 Cologne, Germany.
| | - Pavel Gurikov
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany.
| | - Victor Baudron
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany.
| | - Imke Preibisch
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany.
| | - Philipp Niemeyer
- German Aerospace Center, Institute of Materials Research, Linder Hoehe, 51147 Cologne, Germany.
| | - Irina Smirnova
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany.
| | - Barbara Milow
- German Aerospace Center, Institute of Materials Research, Linder Hoehe, 51147 Cologne, Germany.
| |
Collapse
|
13
|
Moeini A, Cimmino A, Dal Poggetto G, Di Biase M, Evidente A, Masi M, Lavermicocca P, Valerio F, Leone A, Santagata G, Malinconico M. Effect of pH and TPP concentration on chemico-physical properties, release kinetics and antifungal activity of Chitosan-TPP-Ungeremine microbeads. Carbohydr Polym 2018; 195:631-641. [DOI: 10.1016/j.carbpol.2018.05.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/13/2018] [Accepted: 05/02/2018] [Indexed: 12/25/2022]
|
14
|
Trojanowska A, Nogalska A, Valls RG, Giamberini M, Tylkowski B. Technological solutions for encapsulation. PHYSICAL SCIENCES REVIEWS 2017. [DOI: 10.1515/psr-2017-0020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractEncapsulation offers broad scope of applications. It can be used to deliver almost everything from advanced drugs to unique consumer sensory experiences; it could be also employed as a protection system or a sensing material. This cutting-edge technology undergoes rapid growth in both academic and industrial conditions. Research in this matter is continuing to find a new application of microcapsules as well as to improve the methods of their fabrication. Therefore, in this review, we focus on the art of the encapsulation technology to provide the readers with a comprehensive and in-depth understanding of up-to-day development of microcapsule preparation methods. Our goal is to help identify the major encapsulation processes and by doing so maximize the potential value of ongoing research efforts.
Collapse
|
15
|
Boron nitride nanotubes enhance properties of chitosan-based scaffolds. Carbohydr Polym 2016; 151:313-320. [DOI: 10.1016/j.carbpol.2016.05.074] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/13/2016] [Accepted: 05/20/2016] [Indexed: 01/05/2023]
|
16
|
Alakayleh F, Rashid I, Al-Omari MM, Al-Sou'od K, Chowdhry BZ, Badwan AA. Compression profiles of different molecular weight chitosans. POWDER TECHNOL 2016. [DOI: 10.1016/j.powtec.2016.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Sarkar DJ, Singh A, Gaur SR, Shenoy AV. Viscoelastic properties of borax loaded CMC-g-cl-poly(AAm) hydrogel composites and their boron nutrient release behavior. J Appl Polym Sci 2016. [DOI: 10.1002/app.43969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Dhruba Jyoti Sarkar
- Division of Agricultural Chemicals; ICAR-Indian Agricultural Research Institute; New Delhi India
| | - Anupama Singh
- Division of Agricultural Chemicals; ICAR-Indian Agricultural Research Institute; New Delhi India
| | - Shalini Rudra Gaur
- Division of Food Science and Post Harvest Technology; ICAR-Indian Agricultural Research Institute; New Delhi India
| | | |
Collapse
|
18
|
Naing NN, Li SFY, Lee HK. Application of porous membrane-protected chitosan microspheres to determine benzene, toluene, ethylbenzene, xylenes and styrene in water. J Chromatogr A 2016; 1448:42-48. [DOI: 10.1016/j.chroma.2016.04.062] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 11/16/2022]
|
19
|
Abulaihaiti M, Wu XW, Qiao L, Lv HL, Zhang HW, Aduwayi N, Wang YJ, Wang XC, Peng XY. Efficacy of Albendazole-Chitosan Microsphere-based Treatment for Alveolar Echinococcosis in Mice. PLoS Negl Trop Dis 2015; 9:e0003950. [PMID: 26352932 PMCID: PMC4564103 DOI: 10.1371/journal.pntd.0003950] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 07/03/2015] [Indexed: 12/23/2022] Open
Abstract
This study aimed to investigate the pharmacology and anti-parasitic efficacy of albendazole–chitosan microspheres (ABZ-CS-MPs) for established intraperitoneal infections of Echinococcus multilocularis metacestodes in an experimental murine model. Male outbred Kunming mice infected with E. multilocularis Metacestodes were administered with three ABZ formulations, namely, ABZ-CS-MPs, Liposome–Albendazole (L-ABZ), and albendazole tablet (ABZ-T). Each of the ABZ formulations was given orally at three different doses of 37.5, 75, and 150mg/kg, three times a week for 12 weeks postinfection. After administering the drugs, we monitored the pharmacological performance and anti-parasitic efficacy of ABZ-CS-MPs compared with L-ABZ, and ABZ-T treated mice. ABZ-CS-MPs reduced the weight of tissues containing E. multilocularis metacestodes most effectively compared with the ABZ-T group and untreated controls. Metacestode grown was Highly suppressed during treatment with ABZ-CS-MPs. Significantly higher plasma levels of ABZ metabolites were measured in mice treated with ABZ-CS-MPs or L-ABZ compared with ABZ-T. In particular, enhanced ABZ-sulfoxide concentration profiles were observed in the mice given 150mg/kg of ABZ-CS-MPs, but not in the mice treated with L-ABZ. Histological examination showed that damages caused disorganization of both the germinal and laminated layers of liver hyatid cysts, demolishing their characteristic structures after treatment with ABZ-CS-MPs or L-ABZ. Over time, ABZ-CS-MPs treatment induced a shift from Th2-dominant to Th1-dominant immune response. CS-MPs As a new carrier exhibited improved absorption and increased bioavailability of ABZ in the treatment of E. multilocularis infections in mice. Alveolar echinococcosis (AE) is caused by the metacestode stage of Echinococcus multilocularis and is a rare but life-threatening disease. Albendazole is the most frequently used anti-parasitic drugs in patients infected with AE. However, ABZ has only limited water solubility, and small differences in drug solubility may have a major influence on their absorption and resultant pharmacokinetic behavior. Chitosan microspheres as a new carrier increased ABZ absorption and bioavailability. The anti-parasitic efficacy of albendazole–chitosan microspheres (ABZ-CS-MPs) in mice infected with Echinococcus multilocularis was assessed. ABZ-loaded CS-MPs exhibited improved absorption and increased bioavailability in the treatment of E. multilocularis infections in mice compared with those treated with liposome–albendazole and albendazole tablet. ABZ-CS-MPs are in solid form that can be manufactured in capsules or tablets, which can be easily delivered to those in need, particularly those who are nomadic. Therefore, given the merits of low cost, portability, and simple manufacturing, ABZ-CS-MPs are a promising drug to treat alveolar echinococcosis.
Collapse
Affiliation(s)
- Maitiseyiti Abulaihaiti
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Xiang-Wei Wu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Lei Qiao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Hai-Long Lv
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Hong-Wei Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Nasrul Aduwayi
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yan-Jie Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Xin-Chun Wang
- Department of Pharmacy, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
- * E-mail: (XCW); (XYP)
| | - Xin-Yu Peng
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
- * E-mail: (XCW); (XYP)
| |
Collapse
|
20
|
Trifković K, Milašinović N, Djordjević V, Zdunić G, Kalagasidis Krušić M, Knežević-Jugović Z, Šavikin K, Nedović V, Bugarski B. Chitosan crosslinked microparticles with encapsulated polyphenols: Water sorption and release properties. J Biomater Appl 2015; 30:618-31. [DOI: 10.1177/0885328215598940] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Chitosan–glutaraldehyde microparticles were produced by emulsion crosslinking method to be used as drug delivery system for polyphenols from Thymus serpyllum L. aqueous extract. The effect of preparation conditions, chitosan concentration (1.5–3% w/v), and glutaraldehyde/chitosan (GA/Ch) mass ratio (0.15–1.20) on water and polyphenols transport properties was investigated. Swelling ratio of dry particles (68–230 µm) in water ranged from 280% to 530%, depending on the formulation. The decrease in swelling was observed with increased GA/Ch mass ratio (i.e. crosslinking degree) at the same chitosan concentration, or with increased chitosan concentration at the same GA/Ch mass ratio. The increase in GA/Ch mass ratio was also manifested by increased particle compactness i.e. decreased size and reduced surface roughness. The sorption capacity for polyphenols seems to be a complex interplay of swelling behaviour and interactions chitosan–glutaraldehyde–polyphenols identified by Fourier transmission infrared analysis. An increase in crystallinity of chitosan was observed upon crosslinking with glutaraldehyde and encapsulation of polyphenols, as observed by X-ray diffraction analysis. The results obtained from release kinetics of selected polyphenolic compounds (caffeic acid, rosmarinic acid, total flavonoids, and total phenol content) showed that polyphenols were released at a lower amount (2–4 times) in water, but more rapidly (45–120 min) in comparison with the release in gastric followed by intestinal simulated fluid (SGF-SIF) (120–240 min). The experimental results of the time-dependent swelling in water and polyphenols release in both, water and SGF-SIF, were analyzed with several mathematical models. The results depicted Fickian diffusion as the water transport mechanism. In the case of polyphenols, only empirical Weibull model could be suggested for describing release kinetics.
Collapse
Affiliation(s)
- Kata Trifković
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Nikola Milašinović
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
- The Academy of Criminalistic and Police Studies, Department of Forensics, Belgrade, Serbia
| | - Verica Djordjević
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Gordana Zdunić
- Institute for Medicinal Plants Research “Dr Josif Pančić”, Department for Pharmaceutical Research and Development, Belgrade, Serbia
| | | | | | - Katarina Šavikin
- Institute for Medicinal Plants Research “Dr Josif Pančić”, Department for Pharmaceutical Research and Development, Belgrade, Serbia
| | - Viktor Nedović
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Branko Bugarski
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
21
|
Ahmad M, Rai SM, Mahmood A. Hydrogel Microparticles as an Emerging Tool in Pharmaceutical Field: A Review. ADVANCES IN POLYMER TECHNOLOGY 2015. [DOI: 10.1002/adv.21535] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Mahmood Ahmad
- Faculty of Pharmacy; The Islamia University of Bahawalpur; Bahawalpur Punjab 63100 Pakistan
| | - Sarfraz Muhammad Rai
- Faculty of Pharmacy; The Islamia University of Bahawalpur; Bahawalpur Punjab 63100 Pakistan
| | - Asif Mahmood
- Faculty of Pharmacy; The Islamia University of Bahawalpur; Bahawalpur Punjab 63100 Pakistan
| |
Collapse
|
22
|
Nomanbhay SM, Hussain R. Immobilization of Escherichia coli Mutant Strain for Efficient Production of
Bioethanol from Crude Glycerol. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/jas.2015.415.430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Wu H, Xu Y, Liu G, Ling J, Dash BC, Ruan J, Zhang C. Emulsion cross-linked chitosan/nanohydroxyapatite microspheres for controlled release of alendronate. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:2649-2658. [PMID: 25080396 DOI: 10.1007/s10856-014-5289-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 07/21/2014] [Indexed: 06/03/2023]
Abstract
Sustained delivery of growth factors has emerged as an essential requirement for bone tissue engineering applications for the treatment of various kinds of bone defects. Chitosan (CH) has attracted particular attention for drug delivery and bone tissue engineering because of its favorable biocompatibility and biodegradability. In this study, a composite microsphere system containing CH and nanohydroxyapatite (nHA)-alendronate (AL) particles was fabricated by employing both emulsification and cross-linking strategies. The microspheres were characterized for their surface morphology, composition, size distribution, drug loading efficiency and release properties. The results showed that loading efficiency and sustained release of hydrophilic AL were significantly improved, which is ideal for locally sustained release in the bone microenvironment. In vitro osteogenic studies showed that the microspheres could enhance the osteogenic activity of rabbit adipose-derived stem cells. In conclusion, the CH/nHA-AL composite microspheres exhibit promising properties as a candidate for local treatment for bone defects.
Collapse
Affiliation(s)
- Hongwei Wu
- Department of Orthopedics, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan Province, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Lee JH, Kim JC. Cinnamoyl Alginate Microspheres: Effect of UV-Treatment on Release of FITC-Dextran. J DISPER SCI TECHNOL 2014. [DOI: 10.1080/01932691.2014.901173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Trifković KT, Milašinović NZ, Djordjević VB, Krušić MTK, Knežević-Jugović ZD, Nedović VA, Bugarski BM. Chitosan microbeads for encapsulation of thyme (Thymus serpyllum L.) polyphenols. Carbohydr Polym 2014; 111:901-7. [DOI: 10.1016/j.carbpol.2014.05.053] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
|
26
|
Zhang MY, Ding SL, Tang SJ, Yang H, Shi HF, Shen XZ, Tan WQ. Effect of Chitosan Nanospheres Loaded with VEGF on Adipose Tissue Transplantation: A Preliminary Report. Tissue Eng Part A 2014; 20:2273-82. [PMID: 24559057 DOI: 10.1089/ten.tea.2012.0766] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Meng-Yuan Zhang
- Department of Plastic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Shi-Li Ding
- Department of Plastic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Song-Jia Tang
- Department of Plastic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Hu Yang
- Department of Plastic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Hai-Fei Shi
- Department of Plastic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Xiao Z. Shen
- Tongji Suzhou Research Institute, Tongji University, Suzhou, Jiangsu Province, P.R. China
- Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, California
| | - Wei-Qiang Tan
- Department of Plastic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| |
Collapse
|
27
|
Ahangari A, Salouti M, Heidari Z, Kazemizadeh AR, Safari AA. Development of gentamicin-gold nanospheres for antimicrobial drug delivery to Staphylococcal infected foci. Drug Deliv 2013; 20:34-9. [PMID: 23311651 DOI: 10.3109/10717544.2012.746402] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Even though the therapeutic efficacy of numerous antimicrobial drugs has been well established, inefficient delivery can result in an inadequate therapeutic index. Gold nanoparticles have unique physicochemical properties such as large surface area to mass ratio and functionalizable structure. These properties can be applied to facilitate the administration of antimicrobial drugs, thereby overcoming some of the limitations in traditional antimicrobial therapeutics. In this study, gold nanospheres were used as a drug carrier system for gentamicin delivery to Staphylococcal infected foci. Conjugation of gentamicin with gold nanospheres was performed in HEPES buffer. The attachment of gentamicin to gold nanospheres was confirmed by UV/Vis spectroscopy. The HPLC and atomic absorption spectrometer analyses showed that 347 gentamicin molecules were attached to each gold nanosphere. Minimum inhibitory concentration and minimum bactericidal concentration studies showed the enhanced antibacterial effect of gentamicin-gold nanospheres complex in comparison with free gentamicin. The biodistribution study showed the localization of the complex at the site of Staphylococcal infection foci with high sensitivity in mouse model.
Collapse
Affiliation(s)
- Azam Ahangari
- Department of Microbiology, Faculty of Sciences, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | | | | | | | | |
Collapse
|
28
|
Li B, Shan CL, Zhou Q, Fang Y, Wang YL, Xu F, Han LR, Ibrahim M, Guo LB, Xie GL, Sun GC. Synthesis, characterization, and antibacterial activity of cross-linked chitosan-glutaraldehyde. Mar Drugs 2013; 11:1534-52. [PMID: 23670533 PMCID: PMC3707160 DOI: 10.3390/md11051534] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/17/2013] [Accepted: 04/26/2013] [Indexed: 01/31/2023] Open
Abstract
This present study deals with synthesis, characterization and antibacterial activity of cross-linked chitosan-glutaraldehyde. Results from this study indicated that cross-linked chitosan-glutaraldehyde markedly inhibited the growth of antibiotic-resistant Burkholderia cepacia complex regardless of bacterial species and incubation time while bacterial growth was unaffected by solid chitosan. Furthermore, high temperature treated cross-linked chitosan-glutaraldehyde showed strong antibacterial activity against the selected strain 0901 although the inhibitory effects varied with different temperatures. In addition, physical-chemical and structural characterization revealed that the cross-linking of chitosan with glutaraldehyde resulted in a rougher surface morphology, a characteristic Fourier transform infrared (FTIR) band at 1559 cm−1, a specific X-ray diffraction peak centered at 2θ = 15°, a lower contents of carbon, hydrogen and nitrogen, and a higher stability of glucose units compared to chitosan based on scanning electron microscopic observation, FTIR spectra, X-ray diffraction pattern, as well as elemental and thermo gravimetric analysis. Overall, this study indicated that cross-linked chitosan-glutaraldehyde is promising to be developed as a new antibacterial drug.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; E-Mails: (B.L.); (C.-L.S.); (Q.Z.); (M.I.); (G.-L.X.)
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; E-Mail:
| | - Chang-Lin Shan
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; E-Mails: (B.L.); (C.-L.S.); (Q.Z.); (M.I.); (G.-L.X.)
| | - Qing Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; E-Mails: (B.L.); (C.-L.S.); (Q.Z.); (M.I.); (G.-L.X.)
| | - Yuan Fang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China; E-Mail:
| | - Yang-Li Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; E-Mail:
| | - Fei Xu
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; E-Mail:
| | - Li-Rong Han
- Research and Development Center of Biorational Pesticides, Northwest A & F University, Yangling, Shaanxi 712100, China
- Authors to whom correspondence should be addressed; E-Mails: (L.-R.H.); (L.-B.G.); (G.-C.S.); Tel.: +86-29-87092122 (L.-R.H.); +86-571-63370537 (L.-B.G.); +86-571-86404273 (G.-C.S.)
| | - Muhammad Ibrahim
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; E-Mails: (B.L.); (C.-L.S.); (Q.Z.); (M.I.); (G.-L.X.)
| | - Long-Biao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- Authors to whom correspondence should be addressed; E-Mails: (L.-R.H.); (L.-B.G.); (G.-C.S.); Tel.: +86-29-87092122 (L.-R.H.); +86-571-63370537 (L.-B.G.); +86-571-86404273 (G.-C.S.)
| | - Guan-Lin Xie
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; E-Mails: (B.L.); (C.-L.S.); (Q.Z.); (M.I.); (G.-L.X.)
| | - Guo-Chang Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (L.-R.H.); (L.-B.G.); (G.-C.S.); Tel.: +86-29-87092122 (L.-R.H.); +86-571-63370537 (L.-B.G.); +86-571-86404273 (G.-C.S.)
| |
Collapse
|
29
|
Nayak UY, Gopal S, Mutalik S, Ranjith AK, Reddy MS, Gupta P, Udupa N. Glutaraldehyde cross-linked chitosan microspheres for controlled delivery of zidovudine. J Microencapsul 2011; 26:214-22. [PMID: 18819029 DOI: 10.1080/02652040802246325] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Zidovudine-Chitosan microspheres were prepared by a suspension cross-linking method. The chitosan was dissolved in 2% acetic acid solution and this solution was dispersed in the light liquid paraffin. Span-80 was used as an emulsifier and glutaraldehyde as cross-linking agent. The prepared microspheres were slight yellow, free flowing and characterized by drug loading, infrared spectroscopy (IR), differential scanning colorimetry (DSC) and scanning electron microscopy (SEM). The in-vitro release studies are performed in pH 7.4 buffer solution. Microspheres produced are spherical and have smooth surfaces, with sizes ranging between 60-210 µm, as evidenced by SEM and particle size analysis. The drug loaded microspheres showed up to 60% of entrapment and release was extended up to 18-24 h. Among all the systems studied, the 35% Glutaraldehyde crosslinked, microspheres with 1 : 6 drug/chitosan ratio showed 75% release at 12 h. The infrared spectra and DSC thermograms showed stable character of zidovudine in the drug loaded microspheres and revealed the absence of drug-polymer interactions. Data obtained from in vitro release were fitted to various kinetic models and high correlation was obtained in the Higuchi model. The drug release was found to be diffusion controlled.
Collapse
Affiliation(s)
- Usha Yogendra Nayak
- Manipal College of Pharmaceutical Sciences, Manipal, Karnataka-576104, India.
| | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Grech JMR, Mano JF, Reis RL. Processing and characterization of chitosan microspheres to be used as templates for layer-by-layer assembly. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:1855-1865. [PMID: 20364364 DOI: 10.1007/s10856-010-4055-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 03/09/2010] [Indexed: 05/29/2023]
Abstract
Chitosan (Ch) microspheres have been developed by precipitation method, cross-linked with glutaraldehyde and used as a template for layer-by-layer (LBL) deposition of two natural polyelectrolytes. Using a LBL methodology, Ch microspheres were alternately coated with hyaluronic acid (HA) and Ch under mild conditions. The roughness of the Ch-based crosslinked microspheres was characterized by atomic force microscopy (AFM). Morphological characterization was performed by environmental scanning electron microscopy (ESEM), scanning electron microscopy (SEM) and stereolight microscopy. The swelling behaviour of the microspheres demonstrated that the ones with more bilayers presented the highest water uptake and the uncoated cross-linked Ch microspheres showed the lowest uptake capability. Microspheres presented spherical shape with sizes ranging from 510 to 840 mum. ESEM demonstrated that a rougher surface with voids is formed in multilayered microspheres caused by the irregular stacking of the layers. A short term mechanical stability assay was also performed, showing that the LBL procedure with more than five bilayers of HA/Ch over Ch cross-linked microspheres provide higher mechanical stability.
Collapse
Affiliation(s)
- Jessica M R Grech
- Department of Polymer Engineering, 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | |
Collapse
|
32
|
Cury BS, de Castro AD, Klein SI, Evangelista RC. Influence of phosphated cross-linked high amylose on in vitro release of different drugs. Carbohydr Polym 2009. [DOI: 10.1016/j.carbpol.2009.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Cury B, Castro A, Klein S, Evangelista R. Modeling a system of phosphated cross-linked high amylose for controlled drug release. Part 2: Physical parameters, cross-linking degrees and drug delivery relationships. Int J Pharm 2009; 371:8-15. [DOI: 10.1016/j.ijpharm.2008.12.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 12/04/2008] [Accepted: 12/06/2008] [Indexed: 10/21/2022]
|
34
|
Xu Y, Hanna MA. Electrosprayed bovine serum albumin-loaded tripolyphosphate cross-linked chitosan capsules: Synthesis and characterization. J Microencapsul 2008; 24:143-51. [PMID: 17454425 DOI: 10.1080/02652040601058434] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Bovine serum albumin (BSA)-loaded tripolyphosphate (TPP) cross-linked chitosan capsules were prepared using an electrospraying technique, in which a sufficiently strong electric field was applied to overcome the surface tension of a droplet. A comprehensive investigation was conducted on the effects of concentrations of initial chitosan and TPP solutions, flow rate and BSA/chitosan weight ratio on the physical properties of the mixtures; the morphology, size and yield of the capsules; BSA encapsulation efficiency (EE) and loading capacity (LC); and in vitro release. A high voltage was required to obtain a continuous and stable spray for the mixtures with a high viscosity at high chitosan concentration. The capsules were spherical in shape. Capsule size increased with increasing flow rate, but did not change significantly (p < 0.05) with increases in concentrations of chitosan and TPP. Increasing concentrations of chitosan and TPP solutions increased the yields, while yields decreased with increases in the flow rate. EE and LC increased with increasing chitosan concentration, BSA/chitosan weight ratio and TPP concentration and decreased with increasing flow rate. High EE enhanced the BSA release rate, while a high degree of cross-linking slowed its release.
Collapse
Affiliation(s)
- Yixiang Xu
- Industrial Agricultural Products Center, University of Nebraska, Lincoln, NE 68583-0730, USA
| | | |
Collapse
|
35
|
Kim JS, Kwak BK, Shim HJ, Lee YC, Baik HW, Lee MJ, Han SM, Son SH, Kim YB, Tokura S, Lee BM. Preparation of doxorubicin-containing chitosan microspheres for transcatheter arterial chemoembolization of hepatocellular carcinoma. J Microencapsul 2008; 24:408-19. [PMID: 17578731 DOI: 10.1080/02652040701339213] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A new form of doxorubicin hydrochloride (DRH)-containing chitosan microspheres (CMs) was prepared by employing an expanding-loading-shrinking (E-L-S) process. One hundred mg of pre-formed CMs were soaked in absolute ethanol and then placed in reduced pressure (the expanding process). Ten mg of DRH (2 mg ml(-1)) were added into the expanded CMs (the loading process). Next the microspheres were freeze-dried (the shrinking process). As a result of this E-L-S process, 10% (w/w) DRH-containing CMs (DRH-CM) were made. During 7 days, 22.6% of the DRH was observed to be released on the in vitro drug release study. In addition, these new DRH-CMs could be used for transcatheter arterial chemoembolization (TACE) procedure in VX2 hepatic tumour models of rabbit and the anti-tumour effects of DRH-CMs were investigated. On the post-CT scan 7 days after the TACE, total infarctions of the VX2 tumour were observed in 5 rabbits among the 6 total rabbits.
Collapse
Affiliation(s)
- J S Kim
- Department of Radiology, Chung-Ang University Hospital. Heukseok-dong, Dongjak-gu, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Modeling a system of phosphated cross-linked high amylose for controlled drug release. Part 1: Synthesis and polymer characterization. REACT FUNCT POLYM 2008. [DOI: 10.1016/j.reactfunctpolym.2008.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Yuan Y, Chesnutt B, Utturkar G, Haggard W, Yang Y, Ong J, Bumgardner J. The effect of cross-linking of chitosan microspheres with genipin on protein release. Carbohydr Polym 2007. [DOI: 10.1016/j.carbpol.2006.10.023] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Pica K, Tchao R, Ofner CM. Gelatin-methotrexate conjugate microspheres as a potential drug delivery system. J Pharm Sci 2006; 95:1896-908. [PMID: 16850436 DOI: 10.1002/jps.20572] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Gelatin-methotrexate microspheres for intra-tumor administration have possibilities for minimizing systemic toxicities of methotrexate (MTX) and overcoming its resistance. Gelatin-MTX conjugates prepared by a carbodiimide reaction were crosslinked with glutaraldehyde to form microspheres (MTX:gelatin molar ratios of 2:1, 15:1, and 21:1). Microspheres were evaluated under in vitro tumor conditions at pH 6.5 and 37 degrees C with and without Cathepsin B (Cat B). Some microspheres were capped with an ethanolamine/cyanoborohydride procedure. SEM of broken microspheres revealed a hollow shell structure. Superficial Cat B degradation influenced some free MTX release but produced no conjugate fragment release. HPLC measured release of fragments (<10 kDa) was very little and release of free MTX was small. However, higher drug load microspheres released less free MTX than lower drug load, a substantial lag phase of free MTX release from capped microspheres changed to an initial rapid release in uncapped microspheres, and fragments were only released from uncapped microspheres. Opened unstable Schiff base crosslinks in uncapped microspheres may allow enzyme to produce conjugate fragments not observed in capped microspheres. Free MTX release may occur from dissolved uncrosslinked conjugate within the hollow microspheres. Important relationships and observations are described that will be useful for gelatin and perhaps other proteinaceous microspheres.
Collapse
Affiliation(s)
- Karen Pica
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
39
|
Govender S, Pillay V, Chetty DJ, Essack SY, Dangor CM, Govender T. Optimisation and characterisation of bioadhesive controlled release tetracycline microspheres. Int J Pharm 2005; 306:24-40. [PMID: 16246512 DOI: 10.1016/j.ijpharm.2005.07.026] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 07/21/2005] [Accepted: 07/22/2005] [Indexed: 11/23/2022]
Abstract
A Box-Behnken experimental design was employed to statistically optimise the formulation parameters of a tetracycline microsphere preparation for maximum bioadhesivity and controlled drug release. The quantitative effect of the formulation parameters at different levels on bioadhesion and drug release could be predicted using polynomial equations. A formulation comprising of 3% (w/w) chitosan, 10% (w/w) tetracycline HCl and 9% (w/v) tripolyphosphate was identified for maximising bioadhesivity and obtaining controlled drug release. The optimal microsphere preparation was subsequently characterised in terms of hydration dynamics, release kinetics, antimicrobial activity, thermal properties, morphology and surface pH. Kinetic models revealed that drug release followed Fickian diffusion while textural analysis showed minimal hydration over the test period. Antimicrobial studies showed that the drug concentrations in the in vitro release samples were above the minimum concentration of drug required for inhibition of Staphylococcus aureus growth. Thermal analyses showed a possible interaction between the drug and polymer. Scanning electron microscopy confirmed the integrity of the microspheres and identified the morphological changes following drug release. Surface pH of the microspheres was similar to salivary pH and did not show extremes in changes over the test period.
Collapse
Affiliation(s)
- S Govender
- School of Pharmacy and Pharmacology, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Medical treatment has been shifted to being more prophylactic as a recent trend. Postgenomic research has unveiled the fact that nutritional intervention has been strongly associated with genetic expressions, which are responsible for a variety of biological functions. Based on these findings, the prophylactic effects of dietary supplement and nutrient have been enthusiastically investigated. Preventing or retarding the onset of diseases has become a more attractive and cost effective strategy in the medical arena. Among other approaches to prevent diseases, antioxidants, which are found in many phytochemicals, have received much attention. However, most natural antioxidants such as alpha-tocopherol, ascorbic acid and others are biologically unstable, poorly soluble in water, and poorly distributed to target sites. Because of these shortcomings further prophylactic applications of dietary supplements have stagnated. This is partially due to a lack of basic awareness of drug delivery system for dietary supplements and nutrients. In this article, we strongly advocate serious consideration of the bioavailability of dietary supplements. Currently, there are some challenging works to improve their bioavailability using delivery systems such as liposomal formulations. We will discuss the target molecules of dietary supplements for prevention of diseases and also introduce the pioneering works of delivery systems for dietary supplements to promote their therapeutic value.
Collapse
Affiliation(s)
- Yoko Shoji
- Department of Microbiology, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki 216-8511, Japan.
| | | |
Collapse
|
41
|
Barreiro-Iglesias R, Coronilla R, Concheiro A, Alvarez-Lorenzo C. Preparation of chitosan beads by simultaneous cross-linking/insolubilisation in basic pH. Eur J Pharm Sci 2005; 24:77-84. [PMID: 15626580 DOI: 10.1016/j.ejps.2004.09.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 09/27/2004] [Accepted: 09/29/2004] [Indexed: 10/26/2022]
Abstract
A one-step procedure to prepare chitosan beads by simultaneous cross-linking with glutaraldehyde and insolubilisation in 1.5 M NaOH solution has been developed. The optimisation of the procedure was carried out by monitoring the evolution of the loss and storage moduli of chitosan solutions (1.5% (w/v), in acetic acid 0.2 M) in the presence of different proportions of glutaraldehyde. Increasing the chitosan molecular weight, glutaraldehyde concentration and/or process temperature from 20 to 37 degrees C, a reduction of time to reach the gel point was observed. The diameter of freshly prepared swollen beads was 3.2+/-0.4 mm and, after drying 0.48+/-0.18 mm. Swollen or previously dried beads were loaded with metronidazole by immersion in 0.1% (w/v), drug solution in a phosphate buffer pH 7.5, purified water, 0.2 M acetic acid or 0.1 M HCl. Beads synthesised at 37 degrees C experimented faster swelling than the ones prepared at 20 degrees C and even disintegrated in acetic acid. The amounts of metronidazole loaded (ranging from 1 to 286 mg/g dried beads) increased with swelling capacity of beads. The release studies carried out in 0.1 M HCl indicated that, regardless of the medium used to load the beads, all of them released the dose in less than 30 min. In summary, applying this one-step procedure and choosing the adequate glutaraldehyde proportion, it is possible to obtain particles of chitosan cross-linked with itself, which exhibit pH-sensitive swelling and which are able to release all the drug quickly into an acidic environment such as the stomach. The results obtained also highlight the importance of the pH of the medium for modulating the amount of drug loaded (it is remarkably greater at lower pHs) and the influence of temperature at which the beads are prepared on their tendency to disintegrate.
Collapse
Affiliation(s)
- R Barreiro-Iglesias
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15872-Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
42
|
Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, Dhawan S. Chitosan microspheres as a potential carrier for drugs. Int J Pharm 2004; 274:1-33. [PMID: 15072779 DOI: 10.1016/j.ijpharm.2003.12.026] [Citation(s) in RCA: 573] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2002] [Revised: 12/02/2003] [Accepted: 12/12/2003] [Indexed: 11/30/2022]
Abstract
Chitosan is a biodegradable natural polymer with great potential for pharmaceutical applications due to its biocompatibility, high charge density, non-toxicity and mucoadhesion. It has been shown that it not only improves the dissolution of poorly soluble drugs but also exerts a significant effect on fat metabolism in the body. Gel formation can be obtained by interactions of chitosans with low molecular counterions such as polyphosphates, sulphates and crosslinking with glutaraldehyde. This gelling property of chitosan allows a wide range of applications such as coating of pharmaceuticals and food products, gel entrapment of biochemicals, plant embryo, whole cells, microorganism and algae. This review is an insight into the exploitation of the various properties of chitosan to microencapsulate drugs. Various techniques used for preparing chitosan microspheres and evaluation of these microspheres have also been reviewed. This review also includes the factors that affect the entrapment efficiency and release kinetics of drugs from chitosan microspheres.
Collapse
Affiliation(s)
- V R Sinha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | | | | | | | | | | | | |
Collapse
|