1
|
Mansour W, EL Fedawy SF, Atta SA, Zarie RM, Fouad NTA, Maher S, Hussein TM, Abdel Aziz DM, Kamel M. Targeted therapy for HCC using dumbbell-like nanoparticles conjugated to monoclonal antibodies against VEGF and cancer stem cell receptors in mice. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00163-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
Abstract
Background
Hepatocellular carcinoma (HCC) is the leading cause of death worldwide. Nanoparticles allow early detection of tumor and delivery of chemotherapeutic drugs to the specific tumor site. This study aimed to assess the therapeutic role of dumbbell-like nanoparticles conjugated with monoclonal antibodies (mAbs) against both vascular endothelial growth factor (VEGF) and cluster of differentiation (CD) 90 (a cancer stem cell marker) in hepatocellular carcinoma experimental model. This study included 100 mice; HCC was induced chemically in 80 male Balb/c mice by diethylnitrosamine (DEN) and 20 mice served as normal control group. Mice were divided into four groups; pathological control group, mAbs-conjugated nanoparticles-treated group, nanoparticles (alone)-treated group and Avastin-treated group. Animals were sacrificed after one and two months of treatment for assessment of HCC response to treatment. Serum samples were collected and analyzed for alfa-feto protein (AFP), Caspase-3, VEGF-A by enzyme-linked immunosorbent assay (ELISA) technique and alanine transaminase (ALT) and aspartate transaminase (AST) by automated analyzer. Liver sections of sacrificed animals were stained with hematoxylin and eosin (H&E) for histopathological assessment.
Results
There were highly significant and significant differences (p value < 0.1 and < 0.5) between mAbs-conjugated nanoparticles-treated group and Avastin group, respectively, in comparison to pathological group. Both groups showed a significant decrease in all serum parameters, but mAbs-conjugated nanoparticles-treated group had more potent improvement effect when compared with Avastin group. MAbs-conjugated nanoparticles-treated group also showed the best improvement in liver architecture.
Conclusion
Dumbbell-like nanoparticles conjugated to anti-CD90 and Avastin is a novel therapeutic tool for HCC to target cancer stem cells and endothelial cells in the niche of the tumor.
Collapse
|
2
|
Cresti L, Conte G, Cappello G, Brunetti J, Falciani C, Bracci L, Quaglia F, Ungaro F, d’Angelo I, Pini A. Inhalable Polymeric Nanoparticles for Pulmonary Delivery of Antimicrobial Peptide SET-M33: Antibacterial Activity and Toxicity In Vitro and In Vivo. Pharmaceutics 2022; 15:pharmaceutics15010003. [PMID: 36678633 PMCID: PMC9863998 DOI: 10.3390/pharmaceutics15010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Development of inhalable formulations for delivering peptides to the conductive airways and shielding their interactions with airway barriers, thus enhancing peptide/bacteria interactions, is an important part of peptide-based drug development for lung applications. Here, we report the construction of a biocompatible nanosystem where the antimicrobial peptide SET-M33 is encapsulated within polymeric nanoparticles of poly(lactide-co-glycolide) (PLGA) conjugated with polyethylene glycol (PEG). This system was conceived for better delivery of the peptide to the lungs by aerosol. The encapsulated peptide showed prolonged antibacterial activity, due to its controlled release, and much lower toxicity than the free molecule. The peptide-based nanosystem killed Pseudomonas aeruginosa in planktonic and sessile forms in a dose-dependent manner, remaining active up to 72 h after application. The encapsulated peptide showed no cytotoxicity when incubated with human bronchial epithelial cells from healthy individuals and from cystic fibrosis patients, unlike the free peptide, which showed an EC50 of about 22 µM. In vivo acute toxicity studies in experimental animals showed that the peptide nanosystem did not cause any appreciable side effects, and confirmed its ability to mitigate the toxic and lethal effects of free SET-M33.
Collapse
Affiliation(s)
- Laura Cresti
- Laboratory of Clinical Pathology, Santa Maria alle Scotte University Hospital, 53100 Siena, Italy
- SetLance srl, 53100 Siena, Italy
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Gemma Conte
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Giovanni Cappello
- SetLance srl, 53100 Siena, Italy
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Jlenia Brunetti
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Chiara Falciani
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Luisa Bracci
- Laboratory of Clinical Pathology, Santa Maria alle Scotte University Hospital, 53100 Siena, Italy
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Fabiana Quaglia
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy
| | - Francesca Ungaro
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy
| | - Ivana d’Angelo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
- Correspondence: (I.d.); (A.P.)
| | - Alessandro Pini
- Laboratory of Clinical Pathology, Santa Maria alle Scotte University Hospital, 53100 Siena, Italy
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
- Correspondence: (I.d.); (A.P.)
| |
Collapse
|
3
|
Sachi Das S, Singh SK, Verma PRP, Gahtori R, Sibuh BZ, Kesari KK, Jha NK, Dhanasekaran S, Thakur VK, Wong LS, Djearamane S, Gupta PK. Polyester nanomedicines targeting inflammatory signaling pathways for cancer therapy. Biomed Pharmacother 2022; 154:113654. [PMID: 36067568 DOI: 10.1016/j.biopha.2022.113654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 12/09/2022] Open
Abstract
The growth of cancerous cells and their responses towards substantial therapeutics are primarily controlled by inflammations (acute and chronic) and inflammation-associated products, which either endorse or repress tumor progression. Additionally, major signaling pathways, including NF-κB, STAT3, inflammation-causing factors (cytokines, TNF-α, chemokines), and growth-regulating factors (VEGF, TGF-β), are vital regulators responsible for the instigation and resolution of inflammations. Moreover, the conventional chemotherapeutics have exhibited diverse limitations, including poor pharmacokinetics, unfavorable chemical properties, poor targetability to the disease-specific disease leading to toxicity; thus, their applications are restricted in inflammation-mediated cancer therapy. Furthermore, nanotechnology has demonstrated potential benefits over conventional chemotherapeutics, such as it protected the incorporated drug/bioactive moiety from enzymatic degradation within the systemic circulation, improving the physicochemical properties of poorly aqueous soluble chemotherapeutic agents, and enhancing their targetability in specified carcinogenic cells rather than accumulating in the healthy cells, leading reduced cytotoxicity. Among diverse nanomaterials, polyester-based nanoparticulate delivery systems have been extensively used to target various inflammation-mediated cancers. This review summarizes the therapeutic potentials of various polyester nanomaterials (PLGA, PCL, PLA, PHA, and others)-based delivery systems targeting multiple signaling pathways related to inflammation-mediated cancer.
Collapse
Affiliation(s)
- Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology - Mesra, Ranchi 835215, Jharkhand, India; School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India
| | - Sandeep Kumar Singh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology - Mesra, Ranchi 835215, Jharkhand, India.
| | - P R P Verma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology - Mesra, Ranchi 835215, Jharkhand, India
| | - Rekha Gahtori
- Department of Biotechnology, Sir J. C. Bose Technical Campus, Kumaun University, Bhimtal, Nainital 263136, Uttarakhand, India
| | - Belay Zeleke Sibuh
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Kavindra Kumar Kesari
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland; Department of Applied Physics, Aalto University, Espoo, Finland
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, Uttarakhand, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
| | - Sugapriya Dhanasekaran
- Medical Laboratory Sciences Department, College of Applied Medical Sciences, University of Bisha, Bisha 67714, Saudi Arabia
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, SRUC, Edinburgh EH9 3JG, United Kingdom; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India; Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia.
| | - Sinouvassane Djearamane
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia.
| | - Piyush Kumar Gupta
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India; Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India.
| |
Collapse
|
4
|
Kargozar S, Baino F, Hamzehlou S, Hamblin MR, Mozafari M. Nanotechnology for angiogenesis: opportunities and challenges. Chem Soc Rev 2020; 49:5008-5057. [PMID: 32538379 PMCID: PMC7418030 DOI: 10.1039/c8cs01021h] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis plays a critical role within the human body, from the early stages of life (i.e., embryonic development) to life-threatening diseases (e.g., cancer, heart attack, stroke, wound healing). Many pharmaceutical companies have expended huge efforts on both stimulation and inhibition of angiogenesis. During the last decade, the nanotechnology revolution has made a great impact in medicine, and regulatory approvals are starting to be achieved for nanomedicines to treat a wide range of diseases. Angiogenesis therapies involve the inhibition of angiogenesis in oncology and ophthalmology, and stimulation of angiogenesis in wound healing and tissue engineering. This review aims to summarize nanotechnology-based strategies that have been explored in the broad area of angiogenesis. Lipid-based, carbon-based and polymeric nanoparticles, and a wide range of inorganic and metallic nanoparticles are covered in detail. Theranostic and imaging approaches can be facilitated by nanoparticles. Many preparations have been reported to have a bimodal effect where they stimulate angiogenesis at low dose and inhibit it at higher doses.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, 917794-8564 Mashhad, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 101 29 Torino, Italy
| | - Sepideh Hamzehlou
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Multi-path tumor inhibition via the interactive effects between tumor microenvironment and an oxygen self-supplying delivery system for a photosensitizer. Photodiagnosis Photodyn Ther 2020; 29:101642. [DOI: 10.1016/j.pdpdt.2019.101642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/13/2019] [Accepted: 12/27/2019] [Indexed: 12/23/2022]
|
6
|
Casciaro B, d’Angelo I, Zhang X, Loffredo MR, Conte G, Cappiello F, Quaglia F, Di YPP, Ungaro F, Mangoni ML. Poly(lactide-co-glycolide) Nanoparticles for Prolonged Therapeutic Efficacy of Esculentin-1a-Derived Antimicrobial Peptides against Pseudomonas aeruginosa Lung Infection: in Vitro and in Vivo Studies. Biomacromolecules 2019; 20:1876-1888. [DOI: 10.1021/acs.biomac.8b01829] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bruno Casciaro
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, via degli Apuli, 9, 00185 Rome, Italy
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Ivana d’Angelo
- Di.S.T.A.Bi.F., University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Xiaoping Zhang
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Maria Rosa Loffredo
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, via degli Apuli, 9, 00185 Rome, Italy
| | - Gemma Conte
- Di.S.T.A.Bi.F., University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
- Department of Pharmacy, University of Naples Federico II, Via D Montesano 49, 80131 Naples, Italy
| | - Floriana Cappiello
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, via degli Apuli, 9, 00185 Rome, Italy
| | - Fabiana Quaglia
- Department of Pharmacy, University of Naples Federico II, Via D Montesano 49, 80131 Naples, Italy
| | - Yuan-Pu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Francesca Ungaro
- Department of Pharmacy, University of Naples Federico II, Via D Montesano 49, 80131 Naples, Italy
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, via degli Apuli, 9, 00185 Rome, Italy
| |
Collapse
|
7
|
d’Angelo I, Casciaro B, Miro A, Quaglia F, Mangoni ML, Ungaro F. Overcoming barriers in Pseudomonas aeruginosa lung infections: Engineered nanoparticles for local delivery of a cationic antimicrobial peptide. Colloids Surf B Biointerfaces 2015; 135:717-725. [DOI: 10.1016/j.colsurfb.2015.08.027] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/17/2015] [Accepted: 08/19/2015] [Indexed: 10/23/2022]
|
8
|
Supramolecular nanoscale assemblies for cancer diagnosis and therapy. J Control Release 2015; 213:152-167. [PMID: 26160308 DOI: 10.1016/j.jconrel.2015.06.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/26/2015] [Accepted: 06/27/2015] [Indexed: 02/08/2023]
Abstract
Nanocarriers based on polymers, metals and lipids have been extensively developed for cancer therapy and diagnosis due to their ability to enhance drug accumulation in cancer cells and decrease undesired drug toxicity in healthy tissues. Overcoming multidrug resistance by designing proper drug nanocarriers will improve outcome of existing oncologic treatments such as chemotherapy and radiotherapy. In this article the relation between physicochemical properties and capacity of a nanosystem to deliver therapeutic agents into pathological sites is discussed. Most promising examples of drug delivery systems are reviewed, and, in particular, the design of a carbohydrate based matrix with entrapped gold nanoparticles is highlighted.
Collapse
|
9
|
Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): A potential approach for buccal delivery of macromolecules. Int J Pharm 2012; 428:143-51. [DOI: 10.1016/j.ijpharm.2012.02.035] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/16/2012] [Accepted: 02/21/2012] [Indexed: 11/21/2022]
|
10
|
Nanoparticle mediated targeting of VEGFR and cancer stem cells for cancer therapy. Vasc Cell 2011; 3:26. [PMID: 22082307 PMCID: PMC3226586 DOI: 10.1186/2045-824x-3-26] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/14/2011] [Indexed: 01/02/2023] Open
Abstract
Angiogenesis is a crucial process in tumor pathogenesis as it sustains malignant cells with nutrients and oxygen. It is well known that tumor cells secrete various growth factors, including VEGF, which triggers endothelial cells to form new capillaries. Prevention of expansion of new blood vessel networks results in reduced tumor size and metastasis. Production of VEGF is driven by hypoxia via transcriptional activation of the VEGF gene by HIF-1α. Tumours are now understood to contain different types of cells, and it is the cancer stem cells that retain the ability to drive the tumour's growth. They are called cancer stem cells because, like stem cells present in normal tissues of the body, they can self-renew and differentiate. These cancer stem cells are responsible for the relapse of cancer as they are found to be resistant to conventional modes of cancer therapy like chemotherapy and radiation. In this review, a novel mode of treatment of cancer is proposed, which utilizes the twin nanoparticle to target endothelial cells in the niche of cancer stem cell. The nanoparticle discussed in this review, is a twin nanoparticle of iron coated with gold, which targets VEGF positive cell in the vicinity of cancer stem cell. In the twin nanoparticle, one particle will recognize cancer stem cell, and another conjugated nanoparticle will recognize VEGF positive cells, thereby inhibiting endothelial cells in the proximity of cancer stem cell. This novel strategy will inhibit angiogenesis near cancer stem cell hence new tumour cannot grow and old tumour will be unable to metastasize.
Collapse
|
11
|
Parajó Y, d’Angelo I, Horváth A, Vantus T, György K, Welle A, Garcia-Fuentes M, Alonso MJ. PLGA:poloxamer blend micro- and nanoparticles as controlled release systems for synthetic proangiogenic factors. Eur J Pharm Sci 2010; 41:644-9. [DOI: 10.1016/j.ejps.2010.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 09/14/2010] [Accepted: 09/15/2010] [Indexed: 11/27/2022]
|
12
|
d’Angelo I, Garcia-Fuentes M, Parajó Y, Welle A, Vántus T, Horváth A, Bökönyi G, Kéri G, Alonso MJ. Nanoparticles Based on PLGA:Poloxamer Blends for the Delivery of Proangiogenic Growth Factors. Mol Pharm 2010; 7:1724-33. [DOI: 10.1021/mp1001262] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ivana d’Angelo
- Department of Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain, Department of Pharmaceutical and Toxicological Chemistry, University Federico II, Naples, Italy, Institute for Biological Interfaces, Forschungszentrum Karlsruhe, Karlsruhe, Germany, and Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Marcos Garcia-Fuentes
- Department of Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain, Department of Pharmaceutical and Toxicological Chemistry, University Federico II, Naples, Italy, Institute for Biological Interfaces, Forschungszentrum Karlsruhe, Karlsruhe, Germany, and Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Yolanda Parajó
- Department of Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain, Department of Pharmaceutical and Toxicological Chemistry, University Federico II, Naples, Italy, Institute for Biological Interfaces, Forschungszentrum Karlsruhe, Karlsruhe, Germany, and Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Alexander Welle
- Department of Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain, Department of Pharmaceutical and Toxicological Chemistry, University Federico II, Naples, Italy, Institute for Biological Interfaces, Forschungszentrum Karlsruhe, Karlsruhe, Germany, and Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Tibor Vántus
- Department of Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain, Department of Pharmaceutical and Toxicological Chemistry, University Federico II, Naples, Italy, Institute for Biological Interfaces, Forschungszentrum Karlsruhe, Karlsruhe, Germany, and Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Anikó Horváth
- Department of Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain, Department of Pharmaceutical and Toxicological Chemistry, University Federico II, Naples, Italy, Institute for Biological Interfaces, Forschungszentrum Karlsruhe, Karlsruhe, Germany, and Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Györgyi Bökönyi
- Department of Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain, Department of Pharmaceutical and Toxicological Chemistry, University Federico II, Naples, Italy, Institute for Biological Interfaces, Forschungszentrum Karlsruhe, Karlsruhe, Germany, and Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - György Kéri
- Department of Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain, Department of Pharmaceutical and Toxicological Chemistry, University Federico II, Naples, Italy, Institute for Biological Interfaces, Forschungszentrum Karlsruhe, Karlsruhe, Germany, and Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Maria José Alonso
- Department of Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain, Department of Pharmaceutical and Toxicological Chemistry, University Federico II, Naples, Italy, Institute for Biological Interfaces, Forschungszentrum Karlsruhe, Karlsruhe, Germany, and Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| |
Collapse
|