1
|
Rasheed Q, Ahmad Khan K, Razaque G, Ahmad A, Nawaz A, Akhtar N, Ullah Shah K, Rasul Niazi Z, Danish Saeed M, Alam A. Fabrication of glipizide loaded polymeric microparticles; in-vitro and in-vivo evaluation. PLoS One 2025; 20:e0313523. [PMID: 39787127 PMCID: PMC11717267 DOI: 10.1371/journal.pone.0313523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/26/2024] [Indexed: 01/12/2025] Open
Abstract
Controlled-release microparticles offer a promising avenue for enhancing patient compliance and minimizing dosage frequency. In this study, we aimed to design controlled-release microparticles of Glipizide utilizing Eudragit S100 and Methocel K 100 M polymers as controlling agents. The microparticles were fabricated through a simple solvent evaporation method, employing various drug-to-polymer ratios to formulate different controlled-release batches labeled as F1 to F5. Evaluation of the microparticles encompassed a range of parameters including flow properties, particle size, morphology, percentage yield, entrapment efficiencies, percent drug loading, and dissolution studies. Additionally, various kinetic models were employed to elucidate the drug release mechanism. Furthermore, difference and similarity factors were utilized to compare the dissolution profiles of the tested formulations with a reference formulation. The compressibility index and angle of repose indicated favorable flow properties of the prepared microparticles, with values falling within the range of 8 to 10 and 25 to 29, respectively. The particle size distribution of the microparticles ranged from 95.3 to 126 μm. Encouragingly, the microparticles exhibited high percent yield (ranging from 66 to 77%), entrapment efficiency (80 to 96%), and percent drug loading (46 to 54%). All formulated batches demonstrated controlled drug release profiles extending up to 12 hours, with glipizide release following an anomalous non-Fickian diffusion pattern. However, the drug release profiles of the reference formulation and various polymeric microparticles did not meet the acceptable limits of difference and similarity factors. In-vivo studies revealed sustained hypoglycemic effects over a 12-hour period, indicating the efficacy of the controlled-release microparticles. Overall, our findings suggest the successful utilization of polymeric materials in designing controlled-release microparticles, thereby reducing dosage frequency and potentially improving patient compliance.
Collapse
Affiliation(s)
- Qaiser Rasheed
- Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Kamran Ahmad Khan
- Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Ghulam Razaque
- Faculty of Pharmacy, University of Balochistan, Quetta, Pakistan
| | - Ashfaq Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Gulberg Green Campus, Quetta, Islamabad, Pakistan
| | - Asif Nawaz
- Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Naheed Akhtar
- Faculty of Pharmacy, University of Poonch, Rawalakot, Pakistan
| | - Kifayat Ullah Shah
- Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Zahid Rasul Niazi
- Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Muhammad Danish Saeed
- Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Anila Alam
- Faculty of Pharmacy, Sardar Bahadur Khan Women University Quetta, Quetta, Pakistan
| |
Collapse
|
2
|
Polymethylmethacrylate Copolymer-Based Microcarriers for Culturing Mammalian Cells. J Pharm Innov 2021. [DOI: 10.1007/s12247-020-09532-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Kalam MA, Alshamsan A, Alkholief M, Alsarra IA, Ali R, Haq N, Anwer MK, Shakeel F. Solubility Measurement and Various Solubility Parameters of Glipizide in Different Neat Solvents. ACS OMEGA 2020; 5:1708-1716. [PMID: 32010845 PMCID: PMC6990636 DOI: 10.1021/acsomega.9b04004] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/30/2019] [Indexed: 05/17/2023]
Abstract
Glipizide (GLZ) is an oral hypoglycemic agent, which is a weakly aqueous soluble drug. The solubility values of GLZ in various neat solvents are scarce in the literature. Hence, the solubility of GLZ in 12 different neat solvents, namely, "water, methanol, ethanol, isopropanol (IPA), 1-butanol, 2-butanol, ethylene glycol (EG), propylene glycol (PG), poly(ethylene glycol)-400 (PEG-400), ethyl acetate (EA), dimethyl sulfoxide (DMSO), and Transcutol-HP (THP)", at "T = 298.2-318.2 K" and "p = 0.1 MPa" was measured. The recorded solubilities of GLZ were correlated by "van't Hoff and Apelblat models" using root-mean-square deviation (RMSD). The overall RMSD was obtained as 1.21 and 1.40% for "Apelblat and van't Hoff models", respectively. Different solubility parameters of all studied materials including drug and solvent were calculated to find the best solvent for GLZ. The solubilities of GLZ (expressed in mole fraction) have been found highest in DMSO (2.81 × 10-2), followed by THP, EA, 2-butanol, 1-butanol, IPA, PEG-400, ethanol, PG, methanol, EG, and water (1.98 × 10-4) at "T = 318.2 K". All investigated solubility parameters of GLZ were recorded very close to the DMSO. "Apparent thermodynamic analysis" showed an "endothermic and entropy-driven dissolution" of GLZ in the 12 different neat solvents. The highest molecular interactions were recorded in GLZ-DMSO compared to other combinations. Overall, DMSO has been considered as the best solvent for the solubilization of GLZ.
Collapse
Affiliation(s)
- Mohd Abul Kalam
- Nanobiotechnology
Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Aws Alshamsan
- Nanobiotechnology
Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Musaed Alkholief
- Nanobiotechnology
Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ibrahim A. Alsarra
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Raisuddin Ali
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nazrul Haq
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Md Khalid Anwer
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Faiyaz Shakeel
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- E-mail:
| |
Collapse
|
4
|
Elmowafy E, Cespi M, Bonacucina G, Soliman ME. In situ composite ion-triggered gellan gum gel incorporating amino methacrylate copolymer microparticles: a therapeutic modality for buccal applicability. Pharm Dev Technol 2019; 24:1258-1271. [PMID: 31437077 DOI: 10.1080/10837450.2019.1659314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of the current investigation is to delineate the buccal applicability of an in situ composite gel containing aceclofenac (AC) amino methacrylate copolymer microparticles (MPs), surmounting limitations of oral existing conventional therapy. AC Eudragit RL100 MPs were fabricated and statistically optimized using 2241 factorial design. Better buccal applicability and enhanced localization were achieved by combining the optimum MPs with in situ ion-activated gellan gum gel. The crosslinking and gelation of in situ gel were investigated by morphological and solid state characterizations. Suitability for buccal delivery and in vivo therapeutic efficacy in inflammation model of rats were also assessed. Results showed that the best performing formula displayed particle size (PS) of 51.00 µm and high entrapment efficiency (EE%) of 94.73%. MPs were successfully entrapped inside the gel network of the composite system. Gelation tendency, pH, shear-thinning properties and mucoadhesivity of the prepared in situ composite gel guaranteed its buccal suitability. Sustained AC release features and promising in vitro anti-arthritic response were also demonstrated. Moreover, consistent and prolonged in vivo anti-inflammatory effect was achieved, relative to standard AC. Taken together; this study proves the potential of in situ composite gel as an appropriate therapeutic proposal for AC buccal delivery.
Collapse
Affiliation(s)
- Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University , Cairo , Egypt
| | - Marco Cespi
- School of Pharmacy, University of Camerino , Camerino , Italy
| | | | - Mahmoud E Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University , Cairo , Egypt
| |
Collapse
|
5
|
Fael H, Ràfols C, Demirel AL. Poly(2-Ethyl-2-Oxazoline) as an Alternative to Poly(Vinylpyrrolidone) in Solid Dispersions for Solubility and Dissolution Rate Enhancement of Drugs. J Pharm Sci 2018; 107:2428-2438. [PMID: 29859957 DOI: 10.1016/j.xphs.2018.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/10/2018] [Accepted: 05/22/2018] [Indexed: 10/14/2022]
Abstract
Poly(2-ethyl-2-oxazoline) (PEOX), a biocompatible polymer considered as pseudopolypeptide, was introduced as a potential alternative to the commonly used polymer, poly(vinylpyrrolidone) (PVP) for the preparation of solid dispersion with a poorly soluble drug. Glipizide (GPZ), a Biopharmaceutical Classification System class II model drug, was selected for solubility and dissolution rate study. GPZ-polymer solid dispersions and physical mixtures were characterized and investigated by X-ray diffractometry, differential scanning calorimetry, scanning electron microscopy, and FTIR spectroscopy. The impact of polymers on crystal nucleation kinetics was studied, and PEOX exhibited strong inhibitory effect compared with PVP. Solubility and dissolution behavior of the prepared solid dispersions and their physical blends were in vitro examined and evaluated. A significant enhancement in GPZ solubility was obtained with PEOX compared with the pure drug and solid dispersion with PVP. A big improvement in the intrinsic dissolution rate (45 times) and dissolved amount of GPZ (58 times) was achieved with PEOX in fasted state simulated intestinal fluid, against comparable enhancement observed with PEOX and PVP in phosphate buffer at pH 6.8. Lower molecular weight of PEOX-5K (5000 g/mol) was found to be superior to higher molecular weight PEOX-50K (50,000 g/mol) in the improvement of dissolution behavior. The findings of this study with GPZ as a model drug introduce lower molecular weight PEOX as a promising polymeric carrier toward better oral bioavailability of poorly soluble drugs.
Collapse
Affiliation(s)
- Hanan Fael
- Department of Chemistry, Koç University, Istanbul, Turkey.
| | - Clara Ràfols
- Departament de Enginyeria Química i Química Analítica and Institut de Biomedicina (IBUB), Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | | |
Collapse
|
6
|
Lu CC, Ma KL, Ruan XZ, Liu BC. The Emerging Roles of Microparticles in Diabetic Nephropathy. Int J Biol Sci 2017; 13:1118-1125. [PMID: 29104503 PMCID: PMC5666327 DOI: 10.7150/ijbs.21140] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/23/2017] [Indexed: 12/24/2022] Open
Abstract
Microparticles (MPs) are a type of extracellular vesicles (EVs) shed from the outward budding of plasma membranes during cell apoptosis and/or activation. These microsized particles then release specific contents (e.g., lipids, proteins, microRNAs) which are active participants in a wide range of both physiological and pathological processes at the molecular level, e.g., coagulation and angiogenesis, inflammation, immune responses. Research limitations, such as confusing nomenclature and overlapping classification, have impeded our comprehension of these tiny molecules. Diabetic nephropathy (DN) is currently the greatest contributor to end-stage renal diseases (ESRD) worldwide, and its public health impact will continue to grow due to the persistent increase in the prevalence of diabetes mellitus (DM). MPs have recently been considered as potentially involved in DN onset and progression, and this review juxtaposes some of the research updates about the possible mechanisms from several relevant aspects and insights into the therapeutic perspectives of MPs in clinical management and pharmacological treatment of DN patients.
Collapse
Affiliation(s)
- Chen Chen Lu
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing City, Jiangsu Province, China
| | - Kun Ling Ma
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing City, Jiangsu Province, China
| | - Xiong Zhong Ruan
- Centre for Nephrology, University College London (UCL) Medical School, Royal Free Campus, UK
| | - Bi Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing City, Jiangsu Province, China
| |
Collapse
|
7
|
Bera K, Mazumder B, Khanam J. Study of the Mucoadhesive Potential of Carbopol Polymer in the Preparation of Microbeads Containing the Antidiabetic Drug Glipizide. AAPS PharmSciTech 2016; 17:743-56. [PMID: 26335417 DOI: 10.1208/s12249-015-0396-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/12/2015] [Indexed: 11/30/2022] Open
Abstract
The present investigation was aimed at exploitation of the mucoadhesive potential of carbopol 934P polymer in developing microbeads of glipizide (GLP) for its effectivity in controlling blood sugar in diabetic patients. Various batches of GLP beads were prepared by an emulsion-solvent evaporation technique using the release-retarding polymer carbopol and subjected to a systematic evaluation such as physical characterization, ex vivo mucoadhesion, hydration and erosion test, and in vitro drug release; and instrumental and in vivo studies were performed with the best formulation. The highest yield and loading efficiency were observed as 94 and ∼90%, respectively. The mean particle size of the microbeads ranged from 832 to 742 μm. The oval shape of the microbeads with slight roughness was apparent in the SEM micrograph. The release period was extended till 18 h. In vitro release of the drug from the beads followed the diffusion and erosion mechanism. In the oral glucose tolerance test (OGTT), there is a significant (p < 0.01) reduction in fasting blood glucose levels in Wistar rat and guinea pig in comparison with that using the marketed product. Results indicated that process parameters-drug-polymer ratio, concentration of the surfactant, and stirring speed-controlled the various characteristics of the microparticles. The mucoadhesivity test ensured strong adherence of the beads to the mucosal membrane in pH 1.2 for a prolonged period. Owing to the mucoadhesivity of carbopol 934P, prolonged release of GLP and reduction of fasting sugar in the animal model were observed to a satisfactory level, and thus, management of diabetes in a better manner is expected with this new formulation.
Collapse
|
8
|
Dash RN, Mohammed H, Humaira T, Reddy AV. Solid supersaturatable self-nanoemulsifying drug delivery systems for improved dissolution, absorption and pharmacodynamic effects of glipizide. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Dash RN, Mohammed H, Humaira T, Ramesh D. Design, optimization and evaluation of glipizide solid self-nanoemulsifying drug delivery for enhanced solubility and dissolution. Saudi Pharm J 2015; 23:528-40. [PMID: 26594119 PMCID: PMC4605912 DOI: 10.1016/j.jsps.2015.01.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 01/28/2015] [Indexed: 11/19/2022] Open
Abstract
A solid self-nanoemulsifying drug-delivery system (solid SNEDDS) has been explored to improve the solubility and dissolution profile of glipizide. SNEDDS preconcentrate was systematically optimized using a circumscribed central composite design by varying Captex 355 (Oil), Solutol HS15 (Surfactant) and Imwitor 988 (Co-surfactant). The optimized SNEDDS preconcentrate consisted of Captex 355 (30% w/w), Solutol HS15 (45% w/w) and Imwitor 988 (25% w/w). The saturation solubility (SS) of glipizide in optimized SNEDDS preconcentrate was found to be 45.12 ± 1.36 mg/ml, indicating an improvement (1367 times) of glipizide solubility as compared to its aqueous solubility (0.033 ± 0.0021 mg/ml). At 90% SS, glipizide was loaded to the optimized SNEDDS. In-vitro dilution of liquid SNEDDS resulted in a nanoemulsion with a mean droplet size of 29.4 nm. TEM studies of diluted liquid SNEDDS confirmed the uniform shape and size of the globules. The liquid SNEDDS was adsorbed onto calcium carbonate and talc to form solid SNEDDS. PXRD, DSC, and SEM results indicated that, the presence of glipizide as an amorphous and as a molecular dispersion state within solid SNEDDS. Glipizide dissolution improved significantly (p < 0.001) from the solid SNEDDS (∼100% in 15 min) as compared to the pure drug (18.37%) and commercial product (65.82) respectively.
Collapse
Affiliation(s)
- Rajendra Narayan Dash
- Alliance Institute of Advanced Pharmaceutical & Health Sciences, Plot No. 64, Survey No. 145, Sardar Patel Nagar, Kukatpally, Hyderabad 500 072, Telangana, India
| | - Habibuddin Mohammed
- Adept Pharma and Bioscience Excellence Private Limited, Corporate Office: 10-3-561/3/A/102, Vijayanagar Colony, Hyderabad 500057, Telangana, India
- Corresponding author. Tel./fax: +91 4066103388.
| | - Touseef Humaira
- Adept Pharma and Bioscience Excellence Private Limited, Corporate Office: 10-3-561/3/A/102, Vijayanagar Colony, Hyderabad 500057, Telangana, India
| | - Devi Ramesh
- Government Polytechnic for Women, Gujarathipeta, Srikakulam, Andhra Pradesh, India
| |
Collapse
|
10
|
Rai VK, Mishra N, Agrawal AK, Jain S, Yadav NP. Novel drug delivery system: an immense hope for diabetics. Drug Deliv 2014; 23:2371-2390. [PMID: 25544604 DOI: 10.3109/10717544.2014.991001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CONTEXT Existing medication systems for the treatment of diabetes mellitus (DM) are inconvenient and troublesome for effective and safe delivery of drugs to the specific site. Therefore, investigations are desired to deliver antidiabetics using novel delivery approaches followed by their commercialization. OBJECTIVE The present review aims to provide a compilation on the latest development in the field of novel drug delivery systems (NDDSs) for antidiabetics with special emphasis on particulate, vesicular and miscellaneous systems. METHODS Review of literature (restricted to English language only) was done using electronic databases like Pubmed® and Scirus, i.e. published during 2005-2013. The CIMS/MIMS India Medical Drug Information eBook was used regarding available marketed formulation of antidiabetic drugs. Keywords used were "nanoparticle", "microparticle", "liposomes", "niosomes", "transdermal systems", "insulin", "antidiabetic drugs" and "novel drug delivery systems". Single inclusion was made for one article. If in vivo study was not done then article was seldom included in the manuscript. RESULTS The curiosity to develop NDDSs of antidiabetic drugs with special attention to the nanoparticulate system followed by microparticulate and lipid-based system is found to emerge gradually to overcome the problems associated with the conventional dosage forms and to win the confidence of end users towards the higher acceptability. CONCLUSION In the current scientific panorama when the area of novel drug delivery system has been recognized for its palpable benefits, unique potential of providing physical stability, sustained and site-specific drug delivery for a scheduled period of time can open new vistas for precise, safe and quality treatment of DM.
Collapse
Affiliation(s)
- Vineet Kumar Rai
- a Herbal Medicinal Products Department , CSIR - Central Institute of Medicinal and Aromatic Plants , Lucknow , Uttar Pradesh , India and
| | - Nidhi Mishra
- a Herbal Medicinal Products Department , CSIR - Central Institute of Medicinal and Aromatic Plants , Lucknow , Uttar Pradesh , India and
| | - Ashish Kumar Agrawal
- b Department of Pharmaceutics , National Institute of Pharmaceutical Education and Research , Mohali , Punjab , India
| | - Sanyog Jain
- b Department of Pharmaceutics , National Institute of Pharmaceutical Education and Research , Mohali , Punjab , India
| | - Narayan Prasad Yadav
- a Herbal Medicinal Products Department , CSIR - Central Institute of Medicinal and Aromatic Plants , Lucknow , Uttar Pradesh , India and
| |
Collapse
|
11
|
Preparation of microcapsules with the evaluation of physicochemical properties and molecular interaction. Arch Pharm Res 2013; 37:1570-7. [DOI: 10.1007/s12272-013-0306-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/20/2013] [Indexed: 11/27/2022]
|
12
|
Bera K, Khanam J, Mohanraj KP, Mazumder B. Design and evaluation of mucoadhesive beads of glipizide as a controlled release drug delivery system. J Microencapsul 2013; 31:220-9. [DOI: 10.3109/02652048.2013.834989] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Alai M, Lin WJ. A novel once daily microparticulate dosage form comprising lansoprazole to prevent nocturnal acid breakthrough in the case of gastro-esophageal reflux disease: preparation, pharmacokinetic and pharmacodynamic evaluation. J Microencapsul 2013; 30:519-29. [DOI: 10.3109/02652048.2012.758180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Severino P, Santana MHA, Malmonge SM, Souto EB. Polímeros usados como sistemas de transporte de princípios ativos. POLIMEROS 2011. [DOI: 10.1590/s0104-14282011005000061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Os diferentes sistemas de transporte têm evidenciado potencial terapêutico para uma grande variedade de princípios ativos, satisfazendo vários requisitos, como a prevenção da sua eliminação rápida do organismo, a redução da sua toxicidade sistêmica, a estabilização e a otimização do seu metabolismo, e o direcionamento específico ao local alvo e os mecanismos de defesa. No entanto, têm sido reconhecidos vários outros desafios associados à liberação específica do princípio ativo ao local alvo, pelo que, para ultrapassar os obstáculos químicos e biológicos, a seleção do polímero utilizado para a preparação do sistema de transporte é de importância crucial. O presente trabalho apresenta um relato sobre os principais polímeros naturais e sintéticos utilizados para a preparação de sistemas de transporte de princípios ativos in vivo.
Collapse
|