1
|
Gervits LL, Sigan AL, Markova AA, Gulyaev MV, Pavlova OS, Ozhiganov RM, Pirogov YA. High-Contrast and Fast-Removable 19 F-MRI Labels with Perfluoro-tert-Butyl Substituents. ChemMedChem 2023; 18:e202300239. [PMID: 37387552 DOI: 10.1002/cmdc.202300239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/01/2023]
Abstract
19 F MRI is a unique technique for tracking and quantifying the indicator (19 F-MRI label) in vivo without the use of ionizing radiation. Here we report new 19 F-MRI labels, which are compounds with perfluoro-tert-butyl groups: 1,2-bis(perfluoro-tert-butoxy)ethane (C10 F18 H4 O2 ) and 1,3-bis(perfluoro-tert-butyl)propane (C11 F18 H6 ). Both substances contain 18 equivalent 19 F atoms, constituting 68.67 % and 71.25 % of the molecule, respectively. The emulsions with 19 F molecules were prepared and used in 19 F MRI studies in laboratory rats in vivo. The substances demonstrated high contrast properties, good biological inertness and the ability to be rapidly eliminated from the body. We showed that at a dose of 0.34 mg/g of body weight in rats, the time for complete elimination of C10 F18 H4 O2 and C11 F18 H6 is ∼30 days. The results turned out to be promising for the use of the presented compounds in 19 F MRI applications, especially since they are quite easy to synthesize.
Collapse
Affiliation(s)
- Lev L Gervits
- Division of Organoelement Compounds, A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova Street 28, bld. 1., 119334, Moscow, Russia
| | - Andrey L Sigan
- Division of Organoelement Compounds, A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova Street 28, bld. 1., 119334, Moscow, Russia
| | - Alina A Markova
- Laboratory of Photosensitization Processes and the Core Facility "New Materials and Technologies", Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygin Street, bld. 4., 119334, Moscow, Russia
| | - Mikhail V Gulyaev
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Prospekt 27, bld. 1., 119991, Moscow, Russia
| | - Olga S Pavlova
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Prospekt 27, bld. 1., 119991, Moscow, Russia
| | - Ratislav M Ozhiganov
- Higher Chemical College of the Russian Academy of Sciences, Mendeleev University of Chemical Technology of Russia, Miusskaya Square 9., 125047, Moscow, Russia
| | - Yury A Pirogov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, bld. 2., 119991, Moscow, Russia
| |
Collapse
|
2
|
Zhang F, Zhuang J, Esteban Fernández de Ávila B, Tang S, Zhang Q, Fang RH, Zhang L, Wang J. A Nanomotor-Based Active Delivery System for Intracellular Oxygen Transport. ACS NANO 2019; 13:11996-12005. [PMID: 31556988 PMCID: PMC6832785 DOI: 10.1021/acsnano.9b06127] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Active transport of gas molecules is critical to preserve the physiological functions of organisms. Oxygen, as the most essential gas molecule, plays significant roles in maintaining the metabolism and viability of cells. Herein, we report a nanomotor-based delivery system that combines the fast propulsion of acoustically propelled gold nanowire nanomotors (AuNW) with the high oxygen carrying capacity of red blood cell membrane-cloaked perfluorocarbon nanoemulsions (RBC-PFC) for active intracellular delivery of oxygen. The oxygen delivery capacity and kinetics of the AuNW nanomotors carrying RBC-PFC (denoted as "Motor-PFC") are examined under ultrasound field. Specifically, the fast movement of the Motor-PFC under an acoustic field accelerates intracellular delivery of oxygen to J774 macrophage cells. Upon entering the cells, the oxygen loaded in the Motor-PFC is sustainably released, which maintains the cell viability when cultured under hypoxic conditions. The acoustically propelled Motor-PFC leads to significantly higher cell viability (84.4%) over a 72 h period, compared to control samples with free RBC-PFC (44.4%) or to passive Motor-PFC (32.7%). These results indicate that the Motor-PFC can act as an effective delivery vehicle for active intracellular oxygen transport. While oxygen is used here as a model gas molecule, the Motor-PFC platform can be readily expanded to the active delivery of other gas molecules to various target cells.
Collapse
|
3
|
Nevozhay D, Weiger M, Friedl P, Sokolov KV. Spatiotemporally controlled nano-sized third harmonic generation agents. BIOMEDICAL OPTICS EXPRESS 2019; 10:3301-3316. [PMID: 31360600 PMCID: PMC6640828 DOI: 10.1364/boe.10.003301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 05/09/2023]
Abstract
Here, we present a new class of third harmonic generation (THG) imaging probes that can be activated with precise spatiotemporal control using non-linear excitation. These probes consist of lipid-coated perfluorocarbon nanodroplets with embedded visible chromophores. The droplets undergo phase transition from liquid to gas upon heating mediated by two-photon absorption of NIR light by the embedded dyes. Resulting microbubbles provide a sharp, local refractive index mismatch, which makes an excellent source of THG signal. Potential applications of these probes include activatable THG agents for biological imaging and "on-demand" delivery of various compounds under THG monitoring.
Collapse
Affiliation(s)
- Dmitry Nevozhay
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- School of Biomedicine, Far Eastern Federal University, 8 Sukhanova Street, Vladivostok, 690950, Russia
- Equal contribution
| | - Michael Weiger
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- Equal contribution
| | - Peter Friedl
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Cancer Genomics Centre, (CGC.nl), 3584 Utrecht, Netherlands
| | - Konstantin V. Sokolov
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- Department of Bioengineering, Rice University, 6100 Main St, Houston, TX 77005, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Austin, TX 78712, USA
| |
Collapse
|
4
|
Zhuang J, Ying M, Spiekermann K, Holay M, Zhang Y, Chen F, Gong H, Lee JH, Gao W, Fang RH, Zhang L. Biomimetic Nanoemulsions for Oxygen Delivery In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1804693. [PMID: 30294884 PMCID: PMC6487258 DOI: 10.1002/adma.201804693] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/02/2018] [Indexed: 05/18/2023]
Abstract
Blood transfusion is oftentimes required for patients suffering from acute trauma or undergoing surgical procedures in order to help maintain the body's oxygen levels. The continued demand worldwide for blood products is expected to put significant strain on available resources and infrastructure. Unfortunately, efforts to develop viable alternatives to human red blood cells for transfusion are generally unsuccessful. Here, a hybrid natural-synthetic nanodelivery platform that combines the biocompatibility of the natural RBC membrane with the oxygen-carrying ability of perfluorocarbons is reported. The resulting formulation can be stored long-term and exhibits a high capacity for oxygen delivery, helping to mitigate the effects of hypoxia in vitro. In an animal model of hemorrhagic shock, mice are resuscitated at an efficacy comparable to whole blood infusion. By leveraging the advantageous properties of its constituent parts, this biomimetic oxygen delivery system may have the potential to address a critical need in the clinic.
Collapse
Affiliation(s)
- Jia Zhuang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Man Ying
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kevin Spiekermann
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Maya Holay
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yue Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Fang Chen
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hua Gong
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joo Hee Lee
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|