1
|
Kim YJ, Lee ES, Choi J, Park S, Chae B, Kim E. Zein-Induced Polyelectrolyte Complexes for Encapsulating Triterpenoid Phytochemicals. ACS OMEGA 2023; 8:44637-44646. [PMID: 38046302 PMCID: PMC10687950 DOI: 10.1021/acsomega.3c05157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/25/2023] [Indexed: 12/05/2023]
Abstract
The hydrophobicity and aggregation of zein, a biopolymer, limit its application as an effective drug delivery carrier. Here, we developed a zein-induced polyelectrolyte (ZiP) complex and investigated its efficiency in delivering 1% hydrolyzed ginseng saponin, a compound K-rich fraction derived from the root of Panax ginseng. The ZiP complex was formulated by incorporating the self-assembled amphiphilic prolamin zein into the aqueous phase. The physical properties, encapsulation efficiency, and stability of the encapsulation system at room temperature (25 °C) and 45 °C were assessed. The effects of different ratios of zein, pullulan, and pectin on the formation of the ZiP complex, the encapsulation stability, and the cellular efficacy of ZiP complexes were also assessed. The ZiP complex was surface-modified with hydrophilic pullulan and pectin polysaccharides in a mass ratio of 1:2:0.2 through electrostatic interactions. The primary hydrophilic modification of the ZiP complex was formed by the adsorption of pullulan, which enhanced the encapsulation stability. The outermost hydrophilic layer comprised the gelling polysaccharide pectin, which further improved the stability of the macro-sized oil-encapsulated complex, reaching sizes over 50 μm. The size of the ZiP complex increased when the concentration of pectin or the total content of the ZiP complex increased to 2:4:0.2. Compound K was successfully encapsulated with a particle size of 294.8 nm and an encapsulation efficiency of 99.6%. The ZiP complex demonstrated stability at high temperatures and long-term stability of the encapsulated saponin over 24 weeks. These results revealed the potency of ZiP complexes that enhance the in vivo absorption of phytochemicals as effective drug delivery carriers that can overcome the limitations in industrial formulation development as a delivery system.
Collapse
Affiliation(s)
- Yong-Jin Kim
- Research and Innovation Unit, AMOREPACIFIC, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do 1920, Republic of Korea
| | - Eun-Soo Lee
- Research and Innovation Unit, AMOREPACIFIC, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do 1920, Republic of Korea
| | - Joonho Choi
- Research and Innovation Unit, AMOREPACIFIC, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do 1920, Republic of Korea
| | - SeungHan Park
- Research and Innovation Unit, AMOREPACIFIC, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do 1920, Republic of Korea
| | - Byungguen Chae
- Research and Innovation Unit, AMOREPACIFIC, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do 1920, Republic of Korea
| | - Eunmi Kim
- Research and Innovation Unit, AMOREPACIFIC, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do 1920, Republic of Korea
| |
Collapse
|
2
|
Faghmous N, Bouzid D, Boumaza M, Touati A, Boyron O. Optimization of chitosan-coated W/O/W multiple emulsion stabilized with Span 80 and Tween 80 using Box–Behnken design. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1774387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Naima Faghmous
- Process Engineering Laboratory for Sustainable Development and Health Products, National Polytechnic School of Constantine, Constantine, Algeria
- Department of Pharmaceutical Engineering, Faculty of Process Engineering, Salah Boubnider Constantine 3 University, Constantine, Algeria
| | - Djallel Bouzid
- Process Engineering Laboratory for Sustainable Development and Health Products, National Polytechnic School of Constantine, Constantine, Algeria
- Department of Process Engineering, National Polytechnic School of Constantine Malek Bennabi, Constantine, Algeria
| | - Marwa Boumaza
- Department of Process Engineering, National Polytechnic School of Constantine Malek Bennabi, Constantine, Algeria
| | - Asma Touati
- Department of Process Engineering, National Polytechnic School of Constantine Malek Bennabi, Constantine, Algeria
| | - Olivier Boyron
- Chemistry, Catalysis, Polymers and Processes, Villeurbanne Cedex, France
| |
Collapse
|
3
|
Li X, Qi J, Xie Y, Zhang X, Hu S, Xu Y, Lu Y, Wu W. Nanoemulsions coated with alginate/chitosan as oral insulin delivery systems: preparation, characterization, and hypoglycemic effect in rats. Int J Nanomedicine 2012; 8:23-32. [PMID: 23293517 PMCID: PMC3534302 DOI: 10.2147/ijn.s38507] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study aimed to prepare nanoemulsions coated with alginate/chitosan for oral insulin delivery. Uncoated nanoemulsions were prepared by homogenization of a water in oil in water (w/o/w) multiple emulsion that was composed of Labrafac® CC, phospholipid, Span™ 80 and Cremorphor® EL. Coating of the nanoemulsions was achieved based on polyelectrolyte cross-linking, with sequential addition of calcium chloride and chitosan to the bulk nanoemulsion dispersion that contained alginate. The particle size of the coated nanoemulsions was about 488 nm and the insulin entrapment ratio was 47.3%. Circular dichroism spectroscopy proved conformational stability of insulin against the preparative stress. In vitro leakage study indicated well-preserved integrity of the nanoemulsions in simulated gastric juices. Hypoglycemic effects were observed in both normal and diabetic rats. The relative pharmacological bioavailability of the coated nanoemulsion with 25 and 50 IU/kg insulin were 8.42% and 5.72% in normal rats and 8.19% and 7.84% in diabetic rats, respectively. Moreover, there were significantly prolonged hypoglycemic effects after oral administration of the coated nanoemulsions compared with subcutaneous (sc) insulin. In conclusion, the nanoemulsion coated with alginate/chitosan was a potential delivery system for oral delivery of polypeptides and proteins.
Collapse
Affiliation(s)
- Xiaoyang Li
- Key Laboratory of Smart Drug Delivery of Ministry of Education and People's Liberation Army (PLA), School of Pharmacy, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|