1
|
DeWitt M, Demir ZEF, Sherlock T, Brenin DR, Sheybani ND. MR Imaging-Guided Focused Ultrasound for Breast Tumors. Magn Reson Imaging Clin N Am 2024; 32:593-613. [PMID: 39322350 DOI: 10.1016/j.mric.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Breast tumors remain a complex and prevalent health burden impacting millions of individuals worldwide. Challenges in treatment arise from the invasive nature of traditional surgery and, in malignancies, the complexity of treating metastatic disease. The development of noninvasive treatment alternatives is critical for improving patient outcomes and quality of life. This review aims to explore the advancements and applications of focused ultrasound (FUS) technology over the past 2 decades. FUS offers a promising noninvasive, nonionizing intervention strategy in breast tumors including primary breast cancer, fibroadenomas, and metastatic breast cancer.
Collapse
Affiliation(s)
- Matthew DeWitt
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Focused Ultrasound Cancer Immunotherapy Center, University of Virginia, Charlottesville, VA, USA
| | - Zehra E F Demir
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Thomas Sherlock
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - David R Brenin
- Focused Ultrasound Cancer Immunotherapy Center, University of Virginia, Charlottesville, VA, USA; Division of Surgical Oncology, University of Virginia Health System, Charlottesville, VA, USA
| | - Natasha D Sheybani
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Focused Ultrasound Cancer Immunotherapy Center, University of Virginia, Charlottesville, VA, USA; Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
2
|
Lari S, Kohandel M, Kwon HJ. Model based deep learning method for focused ultrasound pathway scanning. Sci Rep 2024; 14:20042. [PMID: 39198623 PMCID: PMC11358149 DOI: 10.1038/s41598-024-70689-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
The primary purpose of high-intensity focused ultrasound (HIFU), a non-invasive medical therapy, is to precisely target and ablate tumors by focusing high-frequency ultrasound from an external power source. A series of ablations must be performed in order to treat a big volume of tumors, as a single ablation can only remove a small amount of tissue. To maximize therapeutic efficacy while minimizing adverse side effects such as skin burns, preoperative treatment planning is essential in determining the focal site and sonication duration for each ablation. Here, we introduce a machine learning-based approach for designing HIFU treatment plans, which makes use of a map of the material characteristics unique to a patient alongside an accurate thermal simulation. A numerical model was employed to solve the governing equations of HIFU process and to simulate the HIFU absorption mechanism, including ensuing heat transfer process and the temperature rise during the sonication period. To validate the accuracy of this numerical model, a series of tests was conducted using ex vivo bovine liver. The findings indicate that the developed models properly represent the considerable variances observed in tumor geometrical shapes and proficiently generate well-defined closed treated regions based on imaging data. The proposed strategy facilitated the formulation of high-quality treatment plans, with an average tissue over- or under-treatment rate of less than 0.06%. The efficacy of the numerical model in accurately predicting the heating process of HIFU, when combined with machine learning techniques, was validated through quantitative comparison with experimental data. The proposed approach in cooperation with HIFU simulation holds the potential to enhance presurgical HIFU plan.
Collapse
Affiliation(s)
- Salman Lari
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Hyock Ju Kwon
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
3
|
Fura Ł, Tymkiewicz R, Kujawska T. Numerical studies on shortening the duration of HIFU ablation therapy and their experimental validation. ULTRASONICS 2024; 142:107371. [PMID: 38852549 DOI: 10.1016/j.ultras.2024.107371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/09/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
High Intensity Focused Ultrasound (HIFU) is used in clinical practice for thermal ablation of malignant and benign solid tumors located in various organs. One of the reason limiting the wider use of this technology is the long treatment time resulting from i.a. the large difference between the size of the focal volume of the heating beam and the size of the tumor. Therefore, the treatment of large tumors requires scanning their volume with a sequence of single heating beams, the focus of which is moved in the focal plane along a specific trajectory with specific time and distance interval between sonications. To avoid an undesirable increase in the temperature of healthy tissues surrounding the tumor during scanning, the acoustic power and exposure time of each HIFU beam as well as the time intervals between sonications should be selected in such a way as to cover the entire volume of the tumor with necrosis as quickly as possible. This would reduce the costs of treatment. The aim of this study was to quantitatively evaluate the hypothesis that selecting the average acoustic power and exposure time for each individual heating beam, as well as the temporal intervals between sonications, can significantly shorten treatment time. Using 3D numerical simulations, the dependence of the duration of treatment of a tumor with a diameter of 5 mm or 9 mm (requiring multiple exposure to the HIFU beam) on the sonication parameters (acoustic power, exposure time) of each single beam capable of delivering the threshold thermal dose (CEM43 = 240 min) to the treated tissue volume was examined. The treatment duration was determined as the sum of exposure times to individual beams and time intervals between sonications. The tumor was located inside the ex vivo tissue sample at a depth of 12.6 mm. The thickness of the water layer between the HIFU transducer and the tissue was 50 mm. The sonication and scanning parameters selected using the developed algorithm shortened the duration of the ablation procedure by almost 14 times for a 5-mm tumor and 20 times for a 9-mm tumor compared to the duration of the same ablation plan when a HIFU beam was used of a constant acoustic power, constant exposure time (3 s) and constant long time intervals (120 s) between sonications. Results of calculations of the location and size of the necrotic lesion formed were experimentally verified on ex vivo pork loin samples, showing good agreement between them. In this way, it was proven that the proper selection of sonication and scanning parameters for each HIFU beam allows to significantly shorten the time of HIFU therapy.
Collapse
Affiliation(s)
- Łukasz Fura
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland.
| | - Ryszard Tymkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Tamara Kujawska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| |
Collapse
|
4
|
Shim J, Staruch R, Koral K, Xie XJ, Chopra R, Laetsch TW. Pediatric Sarcomas Are Targetable by MR-Guided High Intensity Focused Ultrasound (MR-HIFU): Anatomical Distribution and Radiological Characteristics. Pediatr Blood Cancer 2016; 63:1753-60. [PMID: 27199087 PMCID: PMC6016837 DOI: 10.1002/pbc.26079] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/01/2016] [Accepted: 05/03/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Despite intensive therapy, children with metastatic and recurrent sarcoma or neuroblastoma have a poor prognosis. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) is a noninvasive technique allowing the delivery of targeted ultrasound energy under MR imaging guidance. MR-HIFU may be used to ablate tumors without ionizing radiation or target chemotherapy using hyperthermia. Here, we evaluated the anatomic locations of tumors to assess the technical feasibility of MR-HIFU therapy for children with solid tumors. PROCEDURE Patients with sarcoma or neuroblastoma with available cross-sectional imaging were studied. Tumors were classified based on the location and surrounding structures within the ultrasound beam path as (i) not targetable, (ii) completely or partially targetable with the currently available MR-HIFU system, and (iii) potentially targetable if a respiratory motion compensation technique was used. RESULTS Of the 121 patients with sarcoma and 61 patients with neuroblastoma, 64% and 25% of primary tumors were targetable at diagnosis, respectively. Less than 20% of metastases at diagnosis or relapse were targetable for both sarcoma and neuroblastoma. Most targetable lesions were located in extremities or in the pelvis. Respiratory motion compensation may increase the percentage of targetable tumors by 4% for sarcomas and 10% for neuroblastoma. CONCLUSIONS Many pediatric sarcomas are localized at diagnosis and are targetable by current MR-HIFU technology. Some children with neuroblastoma have bony tumors targetable by MR-HIFU at relapse, but few newly diagnosed children with neuroblastoma have tumors amenable to MR-HIFU therapy. Clinical trials of MR-HIFU should focus on patients with anatomically targetable tumors.
Collapse
Affiliation(s)
- Jenny Shim
- Department of Pediatrics, Children’s Health, Dallas, Texas, USA
| | - Robert Staruch
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Philips Research North America, Cambridge, Massachusetts, USA
| | - Korgun Koral
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xian-Jin Xie
- Department of Clinical Sciences, Simmons Comprehensive Cancer Center, Dallas, Texas, USA
| | - Rajiv Chopra
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Texas, USA
| | - Theodore W. Laetsch
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Pauline Allen Gill Center for Cancer and Blood Disorders, Children’s Health, Dallas, Texas, USA
| |
Collapse
|
5
|
Ellens N, Hynynen K. Frequency considerations for deep ablation with high-intensity focused ultrasound: A simulation study. Med Phys 2016; 42:4896-10. [PMID: 26233216 DOI: 10.1118/1.4927060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The objective of this study was to explore frequency considerations for large-volume, deep thermal ablations with focused ultrasound. Though focal patterns, focal steering rate, and the size of focal clusters have all been explored in this context, frequency studies have generally explored shallower depths and hyperthermia applications. This study examines both treatment efficiency and near-field heating rate as functions of frequency and depth. METHODS Flat, 150 mm transducer arrays were simulated to operate at frequencies of 250, 500, 750, 1000, 1250, and 1500 kHz. Each array had λ2 interelement spacing yielding arrays of 2000-70 000 piston-shaped elements arranged in concentric rings. Depths of 50, 100, and 150 mm were explored, with attenuation (α) values of 2.5-10 (Np/m)/MHz. Ultrasound propagation was simulated with the Rayleigh-Sommerfeld integral over a volume of homogeneous simulated tissue. Absorbed power density was determined from the acoustic pressure which, in turn, was modeled with the Pennes bioheat transfer equation. Using this knowledge of temperature over time, thermal dose function of Sapareto and Dewey was used to model the resulting bioeffect of each simulated sonication. Initially, single foci at each depth, frequency, and α were examined with either fixed peak temperatures or fixed powers. Based on the size of the resulting, single foci lesions, larger compound sonications were designed with foci packed together in multiple layers and rings. For each depth, focal patterns were chosen to produce a similar total ablated volume for each frequency. These compound sonications were performed with a fixed peak temperature at each focus. The resulting energy efficiency (volume ablated per acoustic energy applied), near-field heating rate (temperature increase in the anterior third of the simulation space per unit volume ablated), and near- and far-field margins were assessed. RESULTS Lesions of comparable volume were created with different frequencies at different depths. The results reflect the interconnected nature of frequency as it effects focal size (decreasing with frequency), peak pressure (generally increasing with frequency), and attenuation (also increasing with frequency). The ablation efficiency was the highest for α = 5 (Np/m)/MHz at a frequency of 750 kHz at each depth. For α = 10 (Np/m)/MHz, efficiency was the highest at 750 kHz for a depth of 50 mm, and 500 kHz at depths of 100 and 150 mm. At all sonication depths, near-field heating was minimized with lower frequencies of 250 and 500 kHz. CONCLUSIONS Large-volume ablations are most efficient at frequencies of 500-750 kHz at depths of 100-150 mm. When one considers that near-field heat accumulation tends to be the rate limiting factor in large-volume ablations like uterine fibroid surgery, the results show that frequencies as low as 500 kHz are favored for their ability to reduce heating in the near-field.
Collapse
Affiliation(s)
- Nicholas Ellens
- Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Kullervo Hynynen
- Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
6
|
Ellens NPK, Lucht BBC, Gunaseelan ST, Hudson JM, Hynynen KH. A novel, flat, electronically-steered phased array transducer for tissue ablation: preliminary results. Phys Med Biol 2015; 60:2195-215. [DOI: 10.1088/0031-9155/60/6/2195] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Weiss N, Sosna J, Goldberg SN, Azhari H. Non-invasive temperature monitoring and hyperthermic injury onset detection using X-ray CT during HIFU thermal treatment in ex vivo fatty tissue. Int J Hyperthermia 2015; 30:119-25. [PMID: 24571175 DOI: 10.3109/02656736.2014.883466] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE This paper examines X-ray CT, to serve as an image-guiding thermal monitoring modality for high intensity focused ultrasound (HIFU) treatment of fatty tissues. MATERIALS AND METHODS Six ex vivo porcine fat tissue specimens were scanned by X-ray CT simultaneously with the application of HIFU. Images were acquired during both heating and post-ablation stages. The temperature at the focal zone was measured simultaneously using a thermocouple. The mean values of the Hounsfield units (HU) at the focal zone were registered and plotted as a function of temperature. RESULTS In all specimens studied, the HU versus temperature curves measured during the heating stage depicted a characteristic non-linear parabolic trajectory (R(2) > 0.87). The HU-temperature trajectory initially decreased to a minimum value at about 44.5 °C and then increased substantially as the heating progressed. The occurrence of this nadir point during the heating stage was clearly detectable. During post-ablation cooling, on the other hand, the HU increased monotonically with the decreasing temperature and depicted a clearly linear trajectory (R(2) ≥ 0.9). CONCLUSIONS Our results demonstrate that the HU-temperature curve during HIFU treatment has a characteristic parabolic trajectory for fat tissue that might potentially be utilised for thermal monitoring during HIFU ablation treatments. The clear detection of 44.5 °C, presumably marking the onset of hyperthermic injury, can be detected non-invasively as an occurrence of a minimum on the HU-time curve without any need to relate the HU directly to temperature. Such features may be helpful in monitoring and optimising HIFU thermal treatment for clinically applicable indications such as in the breast by providing a non-invasive monitoring of tissue damage.
Collapse
Affiliation(s)
- Noam Weiss
- Department of Biomedical Engineering, Technion - Israel Institute of Technology , Haifa , Israel
| | | | | | | |
Collapse
|
8
|
Ellens N, Hynynen K. Simulation study of the effects of near- and far-field heating during focused ultrasound uterine fibroid ablation using an electronically focused phased array: A theoretical analysis of patient safety. Med Phys 2014; 41:072902. [DOI: 10.1118/1.4883777] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
9
|
Weiss N, Goldberg SN, Sosna J, Azhari H. Temperature–density hysteresis in X-ray CT during HIFU thermal ablation: Heating and cooling phantom study. Int J Hyperthermia 2013; 30:27-35. [DOI: 10.3109/02656736.2013.860241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
10
|
Coon J, Todd N, Roemer R. HIFU treatment time reduction through heating approach optimisation. Int J Hyperthermia 2012; 28:799-820. [DOI: 10.3109/02656736.2012.738846] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Joshua Coon
- Department of Physics and Astronomy, University of Utah, 115 South 400 East, Salt Lake City, UT 84112-0830, USA.
| | | | | |
Collapse
|
11
|
Qiao S, Shen G, Bai J, Chen Y. Effects of different parameters in the fast scanning method for HIFU treatment. Med Phys 2012; 39:5795-813. [PMID: 23039619 DOI: 10.1118/1.4748329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE High-intensity focused ultrasound is a promising method for the noninvasive treatment of benign and malignant tumors. This study analyzes the effects of scanning path, applied power, and geometric characteristics of the transducer on ablation using fast scanning method, a new scanning method that uses high-intensity focused ultrasound at different blood perfusion levels. METHODS Two transducers, six scanning paths, and three focal patterns were used to examine the ablation results of the fast scanning method using power densities from 1.35 × 10(7) W∕m(3) to 4.5 × 10(7) W∕m(3) and blood perfusion rates from 2 × 10(-3) ml∕ml∕s to 16 × 10(-3) ml∕ml∕s. The Pennes equation was solved using the finite-difference time-domain method to simulate the heating procedure. RESULTS Based on the results of the fast-scanning method, the different scanning paths exhibited small effect on the total treatment time supported by both simulation and least-square fit. Similar-sized lesions can result from the five different repeated paths, whereas a random path may lead to relative large fluctuations in ablation volume because of asymmetry of the lesions. Higher power levels increase the lesion volume and decrease the treatment time required for ablating a target area using the fast scanning method, whereas increased blood perfusion has the opposite effect on ablation volume and treatment time. A symmetric lesion can be produced through fast scanning method using a 65-element and a 90-element transducer. However, lesion production using the same operation scheme differs between the two transducers. CONCLUSIONS Unlike traditional scanning methods, fast scanning method produces a planned lesion regardless of scanning path, as long as the path consists of repeated subsequences. This attribute makes fast scanning method an easy-operation scheme that produces relatively large symmetric lesions in homogeneous tissues. Applied power is the most important factor; however, high blood perfusion levels can limit or even hinder the full ablation of the target area. Therefore, tissue perfusion and transducer type should be given special attention to ensure the success and safety of ablation treatment.
Collapse
Affiliation(s)
- Shan Qiao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | | | |
Collapse
|
12
|
Combination treatments of tumors with thermoablation: principles and review of preclinical studies. J Drug Deliv Sci Technol 2012. [DOI: 10.1016/s1773-2247(12)50070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|