1
|
A Novel Framework for the Optimization of Simultaneous ThermoBrachyTherapy. Cancers (Basel) 2022; 14:cancers14061425. [PMID: 35326574 PMCID: PMC8946271 DOI: 10.3390/cancers14061425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 12/15/2022] Open
Abstract
In high-dose-rate brachytherapy (HDR-BT) for prostate cancer treatment, interstitial hyperthermia (IHT) is applied to sensitize the tumor to the radiation (RT) dose, aiming at a more efficient treatment. Simultaneous application of HDR-BT and IHT is anticipated to provide maximum radiosensitization of the tumor. With this rationale, the ThermoBrachyTherapy applicators have been designed and developed, enabling simultaneous irradiation and heating. In this research, we present a method to optimize the three-dimensional temperature distribution for simultaneous HDR-BT and IHT based on the resulting equivalent physical dose (EQDphys) of the combined treatment. First, the temperature resulting from each electrode is precomputed. Then, for a given set of electrode settings and a precomputed radiation dose, the EQDphys is calculated based on the temperature-dependent linear-quadratic model. Finally, the optimum set of electrode settings is found through an optimization algorithm. The method is applied on implant geometries and anatomical data of 10 previously irradiated patients, using reported thermoradiobiological parameters and physical doses. We found that an equal equivalent dose coverage of the target can be achieved with a physical RT dose reduction of 20% together with a significantly lower EQDphys to the organs at risk (p-value < 0.001), even in the least favorable scenarios. As a result, simultaneous ThermoBrachyTherapy could lead to a relevant therapeutic benefit for patients with prostate cancer.
Collapse
|
2
|
Dobšíček Trefná H, Schmidt M, van Rhoon GC, Kok HP, Gordeyev SS, Lamprecht U, Marder D, Nadobny J, Ghadjar P, Abdel-Rahman S, Kukiełka AM, Strnad V, Hurwitz MD, Vujaskovic Z, Diederich CJ, Stauffer PR, Crezee J. Quality assurance guidelines for interstitial hyperthermia. Int J Hyperthermia 2019; 36:277-294. [PMID: 30676101 DOI: 10.1080/02656736.2018.1564155] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Quality assurance (QA) guidelines are essential to provide uniform execution of clinical hyperthermia treatments and trials. This document outlines the clinical and technical consequences of the specific properties of interstitial heat delivery and specifies recommendations for hyperthermia administration with interstitial techniques. Interstitial hyperthermia aims at tumor temperatures in the 40-44 °C range as an adjunct to radiation or chemotherapy. The clinical part of this document imparts specific clinical experience of interstitial heat delivery to various tumor sites as well as recommended interstitial hyperthermia workflow and procedures. The second part describes technical requirements for quality assurance of current interstitial heating equipment including electromagnetic (radiative and capacitive) and ultrasound heating techniques. Detailed instructions are provided on characterization and documentation of the performance of interstitial hyperthermia applicators to achieve reproducible hyperthermia treatments of uniform high quality. Output power and consequent temperature rise are the key parameters for characterization of applicator performance in these QA guidelines. These characteristics determine the specific maximum tumor size and depth that can be heated adequately. The guidelines were developed by the ESHO Technical Committee with participation of senior STM members and members of the Atzelsberg Circle.
Collapse
Affiliation(s)
- H Dobšíček Trefná
- a Department of Electrical Engineering , Chalmers University of Technology , Göteborg , Sweden
| | - M Schmidt
- b Department of Radiation Oncology , University Hospital Erlangen , Erlangen , Germany
| | - G C van Rhoon
- c Department of Radiation Oncology , Erasmus MC Cancer Institute , Rotterdam , the Netherlands
| | - H P Kok
- d Department of Radiation Oncology, Cancer Center Amsterdam , Amsterdam UMC, University of Amsterdam , Amsterdam , the Netherlands
| | - S S Gordeyev
- e Department of Colorectal Oncology , N.N.Blokhin Russian Cancer Research Center , Moscow, Russia
| | - U Lamprecht
- f Radioonkologische Klinik , Universitätsklinikum Tübingen , Tübingen , Germany
| | - D Marder
- g Kantonsspital Aarau , Radio-Onkologie-Zentrum KSA-KSB , Aarau , Switzerland
| | - J Nadobny
- h Klinik für Radioonkologie und Strahlentherapie , Charité Universitätsmedizin Berlin , Berlin , Germany
| | - P Ghadjar
- h Klinik für Radioonkologie und Strahlentherapie , Charité Universitätsmedizin Berlin , Berlin , Germany
| | - S Abdel-Rahman
- i Klinikum der Universität München-Campus Grosshadern , München , Germany
| | - A M Kukiełka
- j Department of Radiation Oncology , Centrum Diagnostyki i Terapii Onkologicznej Nu-Med , Zamość , Poland
| | - V Strnad
- b Department of Radiation Oncology , University Hospital Erlangen , Erlangen , Germany
| | - M D Hurwitz
- k Department of Radiation Oncology , Thomas Jefferson University , Philadelphia , PA , USA
| | - Z Vujaskovic
- l Department of Radiation Oncology , University of Maryland Baltimore , Baltimore , MD , USA
| | - C J Diederich
- m Department of Radiation Oncology , University of California , San Francisco , CA , USA
| | - P R Stauffer
- k Department of Radiation Oncology , Thomas Jefferson University , Philadelphia , PA , USA
| | - J Crezee
- d Department of Radiation Oncology, Cancer Center Amsterdam , Amsterdam UMC, University of Amsterdam , Amsterdam , the Netherlands
| |
Collapse
|
3
|
Scott SJ, Salgaonkar V, Prakash P, Burdette EC, Diederich CJ. Interstitial ultrasound ablation of vertebral and paraspinal tumours: parametric and patient-specific simulations. Int J Hyperthermia 2015; 30:228-44. [PMID: 25017322 DOI: 10.3109/02656736.2014.915992] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Theoretical parametric and patient-specific models are applied to assess the feasibility of interstitial ultrasound ablation of tumours in and near the spine and to identify potential treatment delivery strategies. METHODS 3D patient-specific finite element models (n = 11) of interstitial ultrasound ablation of tumours associated with the spine were generated. Gaseous nerve insulation and various applicator configurations, frequencies (3 and 7 MHz), placement trajectories, and tumour locations were simulated. Parametric studies with multilayered models investigated the impacts of tumour attenuation, tumour dimension, and the thickness of bone insulating critical structures. Temperature and thermal dose were calculated to define ablation (>240 equivalent minutes at 43 °C (EM43 °C)) and safety margins (<45 °C and <6 EM43 °C), and to determine performance and required delivery parameters. RESULTS Osteolytic tumours (≤44 mm) encapsulated by bone could be successfully ablated with 7 MHz interstitial ultrasound (8.1-16.6 W/cm(2), 120-5900 J, 0.4-15 min). Ablation of tumours (94.6-100% volumetric) 0-14.5 mm from the spinal canal was achieved within 3-15 min without damaging critical nerves. 3 MHz devices provided faster ablation (390 versus 930 s) of an 18 mm diameter osteoblastic (high bone content) volume than 7 MHz devices. Critical anatomy in proximity to the tumour could be protected by selection of appropriate applicator configurations, active sectors, and applied power schemas, and through gaseous insulation. Preferential ultrasound absorption at bone surfaces facilitated faster, more effective ablations in osteolytic tumours and provided isolation of ablative energies and temperatures. CONCLUSIONS Parametric and patient-specific studies demonstrated the feasibility and potential advantages of interstitial ultrasound ablation treatment of paraspinal and osteolytic vertebral tumours.
Collapse
Affiliation(s)
- Serena J Scott
- Thermal Therapy Research Group, Department of Radiation Oncology, University of California , San Francisco , California
| | | | | | | | | |
Collapse
|
4
|
Salgaonkar VA, Diederich CJ. Catheter-based ultrasound technology for image-guided thermal therapy: current technology and applications. Int J Hyperthermia 2015; 31:203-15. [PMID: 25799287 DOI: 10.3109/02656736.2015.1006269] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Catheter-based ultrasound (CBUS) is applied to deliver minimally invasive thermal therapy to solid cancer tumours, benign tissue growth, vascular disease, and tissue remodelling. Compared to other energy modalities used in catheter-based surgical interventions, unique features of ultrasound result in conformable and precise energy delivery with high selectivity, fast treatment times, and larger treatment volumes. We present a concise review of CBUS technology being currently utilized in animal and clinical studies or being developed for future applications. CBUS devices have been categorised into interstitial, endoluminal and endovascular/cardiac applications. Basic applicator designs, site-specific evaluations and possible treatment applications have been discussed in brief. Particular emphasis has been given to ablation studies that incorporate image guidance for applicator placement, therapy monitoring, feedback control, and post-procedure assessment. Examples of devices included here span the entire spectrum of the development cycle from preliminary simulation-based design studies to implementation in clinical investigations. The use of CBUS under image guidance has the potential for significantly improving precision and applicability of thermal therapy delivery.
Collapse
Affiliation(s)
- Vasant A Salgaonkar
- Department of Radiation Oncology, University of California , San Francisco, California , USA
| | | |
Collapse
|
5
|
Prakash P, Salgaonkar VA, Diederich CJ. Modelling of endoluminal and interstitial ultrasound hyperthermia and thermal ablation: applications for device design, feedback control and treatment planning. Int J Hyperthermia 2013; 29:296-307. [PMID: 23738697 PMCID: PMC4087028 DOI: 10.3109/02656736.2013.800998] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Endoluminal and catheter-based ultrasound applicators are currently under development and are in clinical use for minimally invasive hyperthermia and thermal ablation of various tissue targets. Computational models play a critical role in device design and optimisation, assessment of therapeutic feasibility and safety, devising treatment monitoring and feedback control strategies, and performing patient-specific treatment planning with this technology. The critical aspects of theoretical modelling, applied specifically to endoluminal and interstitial ultrasound thermotherapy, are reviewed. Principles and practical techniques for modeling acoustic energy deposition, bioheat transfer, thermal tissue damage, and dynamic changes in the physical and physiological state of tissue are reviewed. The integration of these models and applications of simulation techniques in identification of device design parameters, development of real time feedback-control platforms, assessing the quality and safety of treatment delivery strategies, and optimisation of inverse treatment plans are presented.
Collapse
Affiliation(s)
- Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA.
| | | | | |
Collapse
|
6
|
Rijnen Z, Bakker JF, Canters RA, Togni P, Verduijn GM, Levendag PC, Van Rhoon GC, Paulides MM. Clinical integration of software tool VEDO for adaptive and quantitative application of phased array hyperthermia in the head and neck. Int J Hyperthermia 2013; 29:181-93. [DOI: 10.3109/02656736.2013.783934] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|