1
|
Dolganova IN, Shikunova IA, Zotov AK, Shchedrina MA, Reshetov IV, Zaytsev KI, Tuchin VV, Kurlov VN. Microfocusing sapphire capillary needle for laser surgery and therapy: Fabrication and characterization. JOURNAL OF BIOPHOTONICS 2020; 13:e202000164. [PMID: 32681714 DOI: 10.1002/jbio.202000164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/21/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
A sapphire shaped capillary needle designed for collimating and focusing of laser radiation was proposed and fabricated by the edge-defined film-fed growth technique. It features an as-grown surface quality, high transparency for visible and near-infrared radiation, high thermal and chemical resistance and the complex shape of the tip, which protects silica fibers. The needle's geometrical parameters can be adjusted for use in various situations, such as type of tissue, modality of therapy and treatment protocol. The focusing effect was demonstrated numerically and observed experimentally during coagulation of the ex vivo porcine liver samples. This needle in combination with 0.22NA optical fiber allows intensive and uniform coagulation of 150 mm3 volume interstitially and 30 mm3 superficially by laser exposure with 280 J without tissue carbonization and fiber damaging along with delicate treatment of small areas. The demonstrated results reveal the perspectives of the proposed sapphire microfocusing needle for laser surgery and therapy.
Collapse
Affiliation(s)
- Irina N Dolganova
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Bauman Moscow State Technical University, Moscow, Russia
| | - Irina A Shikunova
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
| | - Arsen K Zotov
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Marina A Shchedrina
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Igor V Reshetov
- Institute for Cluster Oncology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Academy of Postgraduate Education FSCC FMBA, Moscow, Russia
| | - Kirill I Zaytsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Valery V Tuchin
- Saratov State University, Saratov, Russia
- Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Saratov, Russia
- Tomsk State University, Tomsk, Russia
| | - Vladimir N Kurlov
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
2
|
Ma T, Chai YC, Zhu HY, Chen H, Wang Y, Li QS, Pang LH, Wu RQ, Lv Y, Dong DH. Effects of Different 980-nm Diode Laser Parameters in Hepatectomy. Lasers Surg Med 2019; 51:720-726. [PMID: 31090100 DOI: 10.1002/lsm.23101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2019] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND OBJECTIVE Despite the successful application of laser in animal experiments and clinics, the adjustment of laser parameters during surgery is still unclear. This study aimed to investigate the effect of different 980-nm diode laser parameters in hepatectomy. This could provide a clear protocol for using 980-nm diode laser in hepatectomy. STUDY DESIGN/MATERIALS AND METHODS In total, 48 Sprague-Dawley rats were used to explore the effects of different 980-nm diode laser parameters in hepatectomy, by setting different parameter combinations. The rats were randomly divided into eight groups, including the continuous wave group and quasi-continuous wave group. The effects were assessed in terms of liver resection speed, extent of intraoperative bleeding, and thermal damage. RESULTS In the quasi-continuous wave group, there was a significant difference in resection speed at the different laser parameters (P < 0.001); however, there was no significant difference in intraoperative bleeding and thermal damage. In the continuous wave group, there was a significant difference in resection speed, intraoperative bleeding, and thermal damage at different parameters. CONCLUSION The study showed that the average power determined hemostasis efficiency and thermal damage, and peak power determined the liver resection speed, whereas the pulse width and repetition frequency are not independent factors. When using 980-nm diode laser in hepatectomy, the average power should be decreased to prove hemostasis efficiency in delicate operations, and the peak power should be decreased to accelerate the procedure without worsening thermal damage. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tao Ma
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yi-Chao Chai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Surgical Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hao-Yang Zhu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Huan Chen
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yue Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qing-Shan Li
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li-Hui Pang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Rong-Qian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ding-Hui Dong
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
3
|
Vogl TJ, Basten LM, Nour-Eldin NEA, Kaltenbach B, Bodelle B, Wichmann JL, Ackermann H, Naguib NNN. Evaluation of microwave ablation of liver malignancy with enabled constant spatial energy control to achieve a predictable spherical ablation zone. Int J Hyperthermia 2017; 34:492-500. [DOI: 10.1080/02656736.2017.1358408] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Thomas J. Vogl
- Institute for Diagnostic and Interventional Radiology, Frankfurt-University Hospital, Frankfurt am Main, Germany
| | - Lajos M. Basten
- Institute for Diagnostic and Interventional Radiology, Frankfurt-University Hospital, Frankfurt am Main, Germany
| | - Nour-Eldin A. Nour-Eldin
- Institute for Diagnostic and Interventional Radiology, Frankfurt-University Hospital, Frankfurt am Main, Germany
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine Cairo University, Egypt
| | - Benjamin Kaltenbach
- Institute for Diagnostic and Interventional Radiology, Frankfurt-University Hospital, Frankfurt am Main, Germany
| | - Boris Bodelle
- Institute for Diagnostic and Interventional Radiology, Frankfurt-University Hospital, Frankfurt am Main, Germany
| | - Julian L. Wichmann
- Institute for Diagnostic and Interventional Radiology, Frankfurt-University Hospital, Frankfurt am Main, Germany
| | - Hanns Ackermann
- Department of Biomedical Statistics, Frankfurt-University, Frankfurt am Main, Germany
| | - Nagy N. N. Naguib
- Institute for Diagnostic and Interventional Radiology, Frankfurt-University Hospital, Frankfurt am Main, Germany
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Fahrenholtz SJ, Madankan R, Danish S, Hazle JD, Stafford RJ, Fuentes D. Theoretical model for laser ablation outcome predictions in brain: calibration and validation on clinical MR thermometry images. Int J Hyperthermia 2017; 34:101-111. [PMID: 28540820 DOI: 10.1080/02656736.2017.1319974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
PURPOSE Neurosurgical laser ablation is experiencing a renaissance. Computational tools for ablation planning aim to further improve the intervention. Here, global optimisation and inverse problems are demonstrated to train a model that predicts maximum laser ablation extent. METHODS A closed-form steady state model is trained on and then subsequently compared to N = 20 retrospective clinical MR thermometry datasets. Dice similarity coefficient (DSC) is calculated to provide a measure of region overlap between the 57 °C isotherms of the thermometry data and the model-predicted ablation regions; 57 °C is a tissue death surrogate at thermal steady state. A global optimisation scheme samples the dominant model parameter sensitivities, blood perfusion (ω) and optical parameter (μeff) values, throughout a parameter space totalling 11 440 value-pairs. This represents a lookup table of μeff-ω pairs with the corresponding DSC value for each patient dataset. The μeff-ω pair with the maximum DSC calibrates the model parameters, maximising predictive value for each patient. Finally, leave-one-out cross-validation with global optimisation information trains the model on the entire clinical dataset, and compares against the model naïvely using literature values for ω and μeff. RESULTS When using naïve literature values, the model's mean DSC is 0.67 whereas the calibrated model produces 0.82 during cross-validation, an improvement of 0.15 in overlap with the patient data. The 95% confidence interval of the mean difference is 0.083-0.23 (p < 0.001). CONCLUSIONS During cross-validation, the calibrated model is superior to the naïve model as measured by DSC, with +22% mean prediction accuracy. Calibration empowers a relatively simple model to become more predictive.
Collapse
Affiliation(s)
- Samuel John Fahrenholtz
- a Department of Imaging Physics , University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b Department of Medical Physics , UTHealth Graduate School of Biomedical Sciences , Houston , TX , USA
| | - Reza Madankan
- a Department of Imaging Physics , University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Shabbar Danish
- c Section of Neurosurgery , Rutgers Cancer Institute of New Jersey , New Brunswick , NJ , USA
| | - John D Hazle
- a Department of Imaging Physics , University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b Department of Medical Physics , UTHealth Graduate School of Biomedical Sciences , Houston , TX , USA
| | - R Jason Stafford
- a Department of Imaging Physics , University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b Department of Medical Physics , UTHealth Graduate School of Biomedical Sciences , Houston , TX , USA
| | - David Fuentes
- a Department of Imaging Physics , University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b Department of Medical Physics , UTHealth Graduate School of Biomedical Sciences , Houston , TX , USA
| |
Collapse
|
5
|
Kaltenbach B, Roman A, Eichler K, Nour-Eldin NEA, Vogl TJ, Zangos S. Real-time qualitative MR monitoring of microwave ablation in ex vivo livers. Int J Hyperthermia 2016; 32:757-64. [DOI: 10.1080/02656736.2016.1204629] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Benjamin Kaltenbach
- Department of Diagnostic and Interventional Radiology, University Hospital, Frankfurt am Main, Germany
| | - Andrei Roman
- Department of Diagnostic and Interventional Radiology, University Hospital, Frankfurt am Main, Germany
| | - Katrin Eichler
- Department of Diagnostic and Interventional Radiology, University Hospital, Frankfurt am Main, Germany
| | - Nour-Eldin A. Nour-Eldin
- Department of Diagnostic and Interventional Radiology, University Hospital, Frankfurt am Main, Germany
- Department of Diagnostic and Interventional Radiology, Cairo University Hospital, Cairo, Egypt
| | - Thomas J. Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital, Frankfurt am Main, Germany
| | - Stephan Zangos
- Department of Diagnostic and Interventional Radiology, University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Mulier S, Jiang Y, Jamart J, Wang C, Feng Y, Marchal G, Michel L, Ni Y. Bipolar radiofrequency ablation with 2 × 2 electrodes as a building block for matrix radiofrequency ablation:Ex vivoliver experiments and finite element method modelling. Int J Hyperthermia 2015; 31:649-65. [DOI: 10.3109/02656736.2015.1046194] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|