1
|
Three-Dimensional Printing of Curcumin-Loaded Biodegradable and Flexible Scaffold for Intracranial Therapy of Glioblastoma Multiforme. Pharmaceutics 2021; 13:pharmaceutics13040471. [PMID: 33807243 PMCID: PMC8065414 DOI: 10.3390/pharmaceutics13040471] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
A novel drug delivery system preventing Glioblastoma multiforme (GBM) recurrence after resection surgery is imperatively required to overcome the mechanical limitation of the current local drug delivery system and to offer personalised treatment options for GBM patients. In this study, 3D printed biodegradable flexible porous scaffolds were developed via Fused Deposition Modelling (FDM) three-dimensional (3D) printing technology for the local delivery of curcumin. The flexible porous scaffolds were 3D printed with various geometries containing 1, 3, 5, and 7% (w/w) of curcumin, respectively, using curcumin-loaded polycaprolactone (PCL) filaments. The scaffolds were characterised by a series of characterisation studies and in vitro studies were also performed including drug release study, scaffold degradation study, and cytotoxicity study. The curcumin-loaded PCL scaffolds displayed versatile spatiotemporal characteristics. The polymeric scaffolds obtained great mechanical flexibility with a low tensile modulus of less than 2 MPa, and 4 to 7-fold ultimate tensile strain, which can avoid the mechanical mismatch problem of commercially available GLIADEL wafer with a further improvement in surgical margin coverage. In vitro release profiles have demonstrated the sustained release patterns of curcumin with adjustable release amounts and durations up to 77 h. MTT study has demonstrated the great cytotoxic effect of curcumin-loaded scaffolds against the U87 human GBM cell line. Therefore, 3D printed curcumin-loaded scaffold has great promise to provide better GBM treatment options with its mechanical flexibility and customisability to match individual needs, preventing post-surgery GBM recurrence and eventually prolonging the life expectancy of GBM patients.
Collapse
|
2
|
Yu Q, Xiao W, Sun S, Sohrabi A, Liang J, Seidlits SK. Extracellular Matrix Proteins Confer Cell Adhesion-Mediated Drug Resistance Through Integrin α v in Glioblastoma Cells. Front Cell Dev Biol 2021; 9:616580. [PMID: 33834020 PMCID: PMC8021872 DOI: 10.3389/fcell.2021.616580] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/26/2021] [Indexed: 12/25/2022] Open
Abstract
Chemotherapy resistance to glioblastoma (GBM) remains an obstacle that is difficult to overcome, leading to poor prognosis of GBM patients. Many previous studies have focused on resistance mechanisms intrinsic to cancer cells; the microenvironment surrounding tumor cells has been found more recently to have significant impacts on the response to chemotherapeutic agents. Extracellular matrix (ECM) proteins may confer cell adhesion-mediated drug resistance (CAMDR). Here, expression of the ECM proteins laminin, vitronectin, and fibronectin was assessed in clinical GBM tumors using immunohistochemistry. Then, patient-derived GBM cells grown in monolayers on precoated laminin, vitronectin, or fibronectin substrates were treated with cilengitide, an integrin inhibitor, and/or carmustine, an alkylating chemotherapy. Cell adhesion and viability were quantified. Transcription factor (TF) activities were assessed over time using a bioluminescent assay in which GBM cells were transduced with lentiviruses containing consensus binding sites for specific TFs linked to expression a firefly luciferase reporter. Apoptosis, mediated by p53, was analyzed by Western blotting and immunocytofluorescence. Integrin αv activation of the FAK/paxillin/AKT signaling pathway and effects on expression of the proliferative marker Ki67 were investigated. To assess effects of integrin αv activation of AKT and ERK pathways, which are typically deregulated in GBM, and expression of epidermal growth factor receptor (EGFR), which is amplified and/or mutated in many GBM tumors, shRNA knockdown was used. Laminin, vitronectin, and fibronectin were abundant in clinical GBM tumors and promoted CAMDR in GBM cells cultured on precoated substrates. Cilengitide treatment induced cell detachment, which was most pronounced for cells cultured on vitronectin. Cilengitide treatment increased cytotoxicity of carmustine, reversing CAMDR. ECM adhesion increased activity of NFκB and decreased that of p53, leading to suppression of p53-mediated apoptosis and upregulation of multidrug resistance gene 1 (MDR1; also known as ABCB1 or P-glycoprotein). Expression of Ki67 was correlative with activation of the integrin αv-mediated FAK/paxillin/AKT signaling pathway. EGFR expression increased with integrin αv knockdown GBM cells and may represent a compensatory survival mechanism. These results indicate that ECM proteins confer CAMDR through integrin αv in GBM cells.
Collapse
Affiliation(s)
- Qi Yu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weikun Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Songping Sun
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alireza Sohrabi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jesse Liang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stephanie K Seidlits
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States.,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States.,Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
3
|
Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: State of the art and future directions. CA Cancer J Clin 2020; 70:299-312. [PMID: 32478924 DOI: 10.3322/caac.21613] [Citation(s) in RCA: 978] [Impact Index Per Article: 244.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/05/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor. Overall, the prognosis for patients with this disease is poor, with a median survival of <2 years. There is a slight predominance in males, and incidence increases with age. The standard approach to therapy in the newly diagnosed setting includes surgery followed by concurrent radiotherapy with temozolomide and further adjuvant temozolomide. Tumor-treating fields, delivering low-intensity alternating electric fields, can also be given concurrently with adjuvant temozolomide. At recurrence, there is no standard of care; however, surgery, radiotherapy, and systemic therapy with chemotherapy or bevacizumab are all potential options, depending on the patient's circumstances. Supportive and palliative care remain important considerations throughout the disease course in the multimodality approach to management. The recently revised classification of glioblastoma based on molecular profiling, notably isocitrate dehydrogenase (IDH) mutation status, is a result of enhanced understanding of the underlying pathogenesis of disease. There is a clear need for better therapeutic options, and there have been substantial efforts exploring immunotherapy and precision oncology approaches. In contrast to other solid tumors, however, biological factors, such as the blood-brain barrier and the unique tumor and immune microenvironment, represent significant challenges in the development of novel therapies. Innovative clinical trial designs with biomarker-enrichment strategies are needed to ultimately improve the outcome of patients with glioblastoma.
Collapse
Affiliation(s)
- Aaron C Tan
- Division of Medical Oncology, National Cancer Center Singapore, Singapore
| | - David M Ashley
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| | - Giselle Y López
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Michael Malinzak
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
- Department of Radiology, Duke University, Durham, North Carolina, USA
| | - Henry S Friedman
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| | - Mustafa Khasraw
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| |
Collapse
|
4
|
Sepúlveda JM, Sánchez-Gómez P, Vaz Salgado MÁ, Gargini R, Balañá C. Dacomitinib: an investigational drug for the treatment of glioblastoma. Expert Opin Investig Drugs 2018; 27:823-829. [PMID: 30247945 DOI: 10.1080/13543784.2018.1528225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Standard treatment of newly diagnosed glioblastoma (GB) is surgery with radiotherapy and temozolomide, but tumors will recur with a median overall survival of only 15 months. It seems imperative to explore new possibilities of treatment based on targetable alterations known to be present in GB. Among others, Epidermal Growth Factor Receptor or EGFR (HER1) mutations or amplifications are the most prevalent alterations in GB. In fact, around 40% of GB cases show amplification of EGFR gene, and half of these patients carry the EGFRvIII mutation, a deletion that generates a continuous activation of the tyrosine kinase domain of the receptor. Areas covered: We review the current knowledge about Dacomitinib, an oral, irreversible, second-generation, pan-HER tyrosine kinase inhibitor, in the treatment of glioblastoma. Dacomitinib has noteworthy antiglioma activity in preclinical models and has been tested in one phase II trial in patients with recurrent GB with EGFR amplification. Expert opinion: Despite the poor global results of Dacomitinib in recurrent GB shown in a phase II trial, some patients had a significant benefit. Therefore, it is necessary to improve the knowledge about the mechanisms of failure or resistance to EGFR inhibitors in GB.
Collapse
Affiliation(s)
| | - Pilar Sánchez-Gómez
- b Neurooncology Unit , Instituto de Salud Carlos III, UFIEC , Madrid , Spain
| | | | - Ricardo Gargini
- d Molecular neuropathology , Centro de Biología Molecular, CSIC , Madrid , Spain
| | - Carmen Balañá
- e Neurooncology and Sarcomas , Catalan Institute of Oncology (ICO) Badalona , Barcelona , Spain
| |
Collapse
|
5
|
Abstract
Glioblastoma is the most common and most aggressive form of primary brain tumor in adults and contributes to high social and medical burden as a result of its incurable nature and significant neurologic morbidity. Despite ongoing research, there has not been improvement in survival in glioblastoma. This review discusses recent advances in clinically significant molecular profiling, including IDH mutation status and O6-methylguanine-DNA methyltransferase ( MGMT) promoter methylation. We review updates in management of newly diagnosed and recurrent glioblastoma, as well as common difficulties in management, such as pseudoprogression and pseudoresponse. Ongoing translational research in targeted therapy and immunotherapy is briefly discussed.
Collapse
Affiliation(s)
- Joo Yeon Nam
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - John F de Groot
- The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
6
|
Annexin 2A sustains glioblastoma cell dissemination and proliferation. Oncotarget 2018; 7:54632-54649. [PMID: 27429043 PMCID: PMC5342369 DOI: 10.18632/oncotarget.10565] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/03/2016] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most devastating tumor of the brain, characterized by an almost inevitable tendency to recur after intensive treatments and a fatal prognosis. Indeed, despite recent technical improvements in GBM surgery, the complete eradication of cancer cell disseminated outside the tumor mass still remains a crucial issue for glioma patients management. In this context, Annexin 2A (ANXA2) is a phospholipid-binding protein expressed in a variety of cell types, whose expression has been recently associated with cell dissemination and metastasis in many cancer types, thus making ANXA2 an attractive putative regulator of cell invasion also in GBM. Here we show that ANXA2 is over-expressed in GBM and positively correlates with tumor aggressiveness and patient survival. In particular, we associate the expression of ANXA2 to a mesenchymal and metastatic phenotype of GBM tumors. Moreover, we functionally characterized the effects exerted by ANXA2 inhibition in primary GBM cultures, demonstrating its ability to sustain cell migration, matrix invasion, cytoskeletal remodeling and proliferation. Finally, we were able to generate an ANXA2-dependent gene signature with a significant prognostic potential in different cohorts of solid tumor patients, including GBM. In conclusion, we demonstrate that ANXA2 acts at multiple levels in determining the disseminating and aggressive behaviour of GBM cells, thus proving its potential as a possible target and strong prognostic factor in the future management of GBM patients.
Collapse
|
7
|
Roux A, Caire F, Guyotat J, Menei P, Metellus P, Pallud J. Carmustine wafer implantation for high-grade gliomas: Evidence-based safety efficacy and practical recommendations from the Neuro-oncology Club of the French Society of Neurosurgery. Neurochirurgie 2017; 63:433-443. [PMID: 29122306 DOI: 10.1016/j.neuchi.2017.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/21/2017] [Accepted: 07/28/2017] [Indexed: 11/16/2022]
Abstract
There is a growing body of evidence that carmustine wafer implantation during surgery is an effective therapeutic adjunct to the standard combined radio-chemotherapy regimen using temozolomide in newly diagnosed and recurrent high-grade glioma patient management with a statistically significant survival benefit demonstrated across several randomized clinical trials, as well as prospective and retrospective studies (grade A recommendation). Compelling clinical data also support the safety of carmustine wafer implantation (grade A recommendation) in these patients and suggest that observed adverse events can be avoided in experienced neurosurgeon hands. Furthermore, carmustine wafer implantation does not seem to impact negatively on the quality of life and the completion of adjuvant oncological treatments (grade C recommendation). Moreover, emerging findings support the potential of high-grade gliomas molecular status, especially the O(6)-Methylguanine-DNA Methyltransferase promoter methylation status, in predicting the efficacy of such a surgical strategy, especially at recurrence (grade B recommendation). Finally, carmustine wafer implantation appears to be cost-effective in high-grade glioma patients when performed by an experienced team and when total or subtotal resection can be achieved. Altogether, these data underline the current need for a new randomized clinical trial to assess the impact of a maximal safe resection with carmustine wafer implantation followed by the standard combined chemoradiation protocol stratified by molecular status in high-grade glioma patients.
Collapse
Affiliation(s)
- A Roux
- Department of Neurosurgery, Sainte-Anne Hospital, 1, rue Cabanis, 75674 Paris cedex 14, France; Paris Descartes University, Sorbonne Paris Cité, 75006 Paris, France; Inserm, U894, Centre de psychiatrie et neurosciences, 75006 Paris, France
| | - F Caire
- Department of Neurosurgery, CHU de Limoges, Limoges, France
| | - J Guyotat
- Lyon Civil Hospitals, Pierre Wertheimer Neurological and Neurosurgical Hospital, Service of Neurosurgery D, Lyon, France
| | - P Menei
- Department of Neurosurgery, CHU d'Angers, Angers, France; Inserm 1232/CRCINA, France
| | - P Metellus
- Department of Neurosurgery, Clairval Private Hospital, Marseille, France
| | - J Pallud
- Department of Neurosurgery, Sainte-Anne Hospital, 1, rue Cabanis, 75674 Paris cedex 14, France; Paris Descartes University, Sorbonne Paris Cité, 75006 Paris, France; Inserm, U894, Centre de psychiatrie et neurosciences, 75006 Paris, France.
| | | |
Collapse
|
8
|
A synthetic BMP-2 mimicking peptide induces glioblastoma stem cell differentiation. Biochim Biophys Acta Gen Subj 2017; 1861:2282-2292. [PMID: 28687190 DOI: 10.1016/j.bbagen.2017.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/09/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is the most aggressive type of primary brain tumor, characterized by the intrinsic resistance to chemotherapy due to the presence of a highly aggressive Cancer Stem Cell (CSC) sub-population. In this context, Bone Morphogenetic Proteins (BMPs) have been demonstrated to induce CSC differentiation and to sensitize GBM cells to treatments. METHODS The BMP-2 mimicking peptide, named GBMP1a, was synthesized on solid-phase by Fmoc chemistry. Structural characterization and prediction of receptor binding were obtained by Circular Dicroism (CD) and NRM analyses. Activation of BMP signalling was evaluated by a luciferase reporter assay and western blot. Pro-differentiating effects of GBMP1a were verified by immunostaining and neurosphere assay in primary glioblastoma cultures. RESULTS CD and NMR showed that GBMP1a correctly folds into expected tridimensional structures and predicted its binding to BMPR-IA to the same epitope as in the native complex. Reporter analysis disclosed that GBMP1a is able to activate BMP signalling in GBM cells. Moreover, BMP-signalling activation was specifically dependent on smad1/5/8 phosphorylation. Finally, we confirmed that GBMP1a treatment is sufficient to enhance osteogenic differentiation of Mesenchymal Stem Cells and to induce astroglial differentiation of glioma stem cells (GSCs) in vitro. CONCLUSIONS GBMP1a was demonstrated to be a good inducer of GSC differentiation, thus being considered a potential anti-cancer tool to be further developed for GBM treatment. GENERAL SIGNIFICANCE These data highlight the role of BMP-mimicking peptides as potential anti-cancer agents against GBM and stimulate the further development of GBMP1a-based structures in order to enhance its stability and activity.
Collapse
|
9
|
Carradori D, Gaudin A, Brambilla D, Andrieux K. Application of Nanomedicine to the CNS Diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 130:73-113. [PMID: 27678175 DOI: 10.1016/bs.irn.2016.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Drug delivery to the brain is a challenge because of the many mechanisms that protect the brain from the entry of foreign substances. Numerous molecules which could be active against brain disorders are not clinically useful due to the presence of the blood-brain barrier. Nanoparticles can be used to deliver these drugs to the brain. Encapsulation within colloidal systems can allow the passage of nontransportable drugs across this barrier by masking their physicochemical properties. It should be noted that the status of the blood-brain barrier is different depending on the brain disease. In fact, in some pathological situations such as tumors or inflammatory disorders, its permeability is increased allowing very easy translocation of carriers. This chapter gathers the promising results obtained by using nanoparticles as drug delivery systems with the aim to improve the therapy of some CNS diseases such as brain tumor, Alzheimer's disease, and stroke. The data show that several approaches can be investigated: (1) carrying drug through a permeabilized barrier, (2) crossing the barrier thanks to receptor-mediated transcytosis pathway in order to deliver drug into the brain parenchyma, and also (3) targeting and treating the endothelial cells themselves to preserve locally the brain tissue. The examples given in this chapter contribute to demonstrate that delivering drugs into the brain is one of the most promising applications of nanotechnology in clinical neuroscience.
Collapse
Affiliation(s)
- D Carradori
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, Bruxelles, Belgium
| | - A Gaudin
- Yale University, New Haven, CT, United States
| | - D Brambilla
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - K Andrieux
- Université Paris Descartes, Université Paris-Sorbonne, UTCBS, UMR CNRS 8258, UE1022 INSERM, Paris, France.
| |
Collapse
|
10
|
Wait SD, Prabhu RS, Burri SH, Atkins TG, Asher AL. Polymeric drug delivery for the treatment of glioblastoma. Neuro Oncol 2015; 17 Suppl 2:ii9-ii23. [PMID: 25746091 DOI: 10.1093/neuonc/nou360] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) remains an almost universally fatal diagnosis. The current therapeutic mainstay consists of maximal safe surgical resection followed by radiation therapy (RT) with concomitant temozolomide (TMZ), followed by monthly TMZ (the "Stupp regimen"). Several chemotherapeutic agents have been shown to have modest efficacy in the treatment of high-grade glioma (HGG), but blood-brain barrier impermeability remains a major delivery obstacle. Polymeric drug-delivery systems, developed to allow controlled local release of biologically active substances for a variety of conditions, can achieve high local concentrations of active agents while limiting systemic toxicities. Polymerically delivered carmustine (BCNU) wafers, placed on the surface of the tumor-resection cavity, can potentially provide immediate chemotherapy to residual tumor cells during the standard delay between surgery and chemoradiotherapy. BCNU wafer implantation as monochemotherapy (with RT) in newly diagnosed HGG has been investigated in 2 phase III studies that reported significant increases in median overall survival. A number of studies have investigated the tumoricidal synergies of combination chemotherapy with BCNU wafers in newly diagnosed or recurrent HGG, and a primary research focus has been the integration of BCNU wafers into multimodality therapy with the standard Stupp regimen. Overall, the results of these studies have been encouraging in terms of safety and efficacy. However, the data must be qualified by the nature of the studies conducted. Currently, there are no phase III studies of BCNU wafers with the standard Stupp regimen. We review the rationale, biochemistry, pharmacokinetics, and research history (including toxicity profile) of this modality.
Collapse
Affiliation(s)
- Scott D Wait
- Carolina Neurosurgery and Spine Associates, Charlotte, North Carolina (S.D.W., A.L.A.); Levine Children's Hospital, Carolinas Medical Center, Charlotte, North Carolina (S.D.W.); Department of Neurosurgery, Levine Cancer Institute, and Neuroscience Institute, Carolinas Medical Center, Charlotte, North Carolina (S.D.W., T.G.A., A.L.A.); Southeast Radiation Oncology, Charlotte, North Carolina (R.S.P., S.H.B.); Department of Radiation Oncology, Levine Cancer Institute, Carolinas Medical Center, Charlotte, North Carolina (R.S.P., S.H.B.)
| | - Roshan S Prabhu
- Carolina Neurosurgery and Spine Associates, Charlotte, North Carolina (S.D.W., A.L.A.); Levine Children's Hospital, Carolinas Medical Center, Charlotte, North Carolina (S.D.W.); Department of Neurosurgery, Levine Cancer Institute, and Neuroscience Institute, Carolinas Medical Center, Charlotte, North Carolina (S.D.W., T.G.A., A.L.A.); Southeast Radiation Oncology, Charlotte, North Carolina (R.S.P., S.H.B.); Department of Radiation Oncology, Levine Cancer Institute, Carolinas Medical Center, Charlotte, North Carolina (R.S.P., S.H.B.)
| | - Stuart H Burri
- Carolina Neurosurgery and Spine Associates, Charlotte, North Carolina (S.D.W., A.L.A.); Levine Children's Hospital, Carolinas Medical Center, Charlotte, North Carolina (S.D.W.); Department of Neurosurgery, Levine Cancer Institute, and Neuroscience Institute, Carolinas Medical Center, Charlotte, North Carolina (S.D.W., T.G.A., A.L.A.); Southeast Radiation Oncology, Charlotte, North Carolina (R.S.P., S.H.B.); Department of Radiation Oncology, Levine Cancer Institute, Carolinas Medical Center, Charlotte, North Carolina (R.S.P., S.H.B.)
| | - Tyler G Atkins
- Carolina Neurosurgery and Spine Associates, Charlotte, North Carolina (S.D.W., A.L.A.); Levine Children's Hospital, Carolinas Medical Center, Charlotte, North Carolina (S.D.W.); Department of Neurosurgery, Levine Cancer Institute, and Neuroscience Institute, Carolinas Medical Center, Charlotte, North Carolina (S.D.W., T.G.A., A.L.A.); Southeast Radiation Oncology, Charlotte, North Carolina (R.S.P., S.H.B.); Department of Radiation Oncology, Levine Cancer Institute, Carolinas Medical Center, Charlotte, North Carolina (R.S.P., S.H.B.)
| | - Anthony L Asher
- Carolina Neurosurgery and Spine Associates, Charlotte, North Carolina (S.D.W., A.L.A.); Levine Children's Hospital, Carolinas Medical Center, Charlotte, North Carolina (S.D.W.); Department of Neurosurgery, Levine Cancer Institute, and Neuroscience Institute, Carolinas Medical Center, Charlotte, North Carolina (S.D.W., T.G.A., A.L.A.); Southeast Radiation Oncology, Charlotte, North Carolina (R.S.P., S.H.B.); Department of Radiation Oncology, Levine Cancer Institute, Carolinas Medical Center, Charlotte, North Carolina (R.S.P., S.H.B.)
| |
Collapse
|
11
|
Rehman AA, Elmore KB, Mattei TA. The effects of alternating electric fields in glioblastoma: current evidence on therapeutic mechanisms and clinical outcomes. Neurosurg Focus 2015; 38:E14. [PMID: 25727223 DOI: 10.3171/2015.1.focus14742] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glioblastoma is both the most common and most lethal primary CNS malignancy in adults, accounting for 45.6% of all malignant CNS tumors, with a 5-year survival rate of only 5.0%, despite the utilization of multimodal therapy including resection, chemotherapy, and radiation. Currently available treatment options for glioblastoma often remain limited, offering brief periods of improved survival, but with substantial side effects. As such, improvements in current treatment strategies or, more likely, the implementation of novel strategies altogether are warranted. In this topic review, the authors provide a comprehensive review on the potential of alternating electric fields (AEFs) in the treatment of glioblastoma. Alternating electric fields-also known as tumor-treating fields (TTFs)-represent an entirely original therapeutic modality with preliminary studies suggesting comparable, and at times improved, efficacy to standard chemotherapeutic agents in the treatment of recurrent glioblastoma. A recent multicenter, Phase III, randomized clinical trial comparing NovoTTF-100A monotherapy to physician's best choice chemotherapy in patients with recurrent glioblastoma revealed that AEFs have similar efficacy to standard chemotherapeutic agents with a more favorable side-effects profile and improved quality of life. In particular, AEFs were shown to have limited systemic adverse effects, with the most common side effect being contact dermatitis on the scalp at the sites of transducer placement. This study prompted FDA approval of the NovoTTF-100A system in April 2011 as a standalone therapy for treatment of recurrent glioblastoma refractory to surgical and radiation treatment. In addition to discussing the available clinical evidence regarding the utilization of AEFs in glioblastoma, this article provides essential information regarding the supposed therapeutic mechanism as well as modes of potential tumor resistance to such novel therapy, delineating future perspectives regarding basic science research on the issue.
Collapse
Affiliation(s)
- Azeem A Rehman
- University of Illinois College of Medicine at Peoria, Illinois; and
| | | | | |
Collapse
|
12
|
Burri SH, Prabhu RS, Sumrall AL, Brick W, Blaker BD, Heideman BE, Boltes P, Kelly R, Symanowski JT, Wiggins WF, Ashby L, Norton HJ, Judy K, Asher AL. BCNU wafer placement with temozolomide (TMZ) in the immediate postoperative period after tumor resection followed by radiation therapy with TMZ in patients with newly diagnosed high grade glioma: final results of a prospective, multi-institutional, phase II trial. J Neurooncol 2015; 123:259-66. [DOI: 10.1007/s11060-015-1793-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 04/25/2015] [Indexed: 12/20/2022]
|
13
|
Chowdhary SA, Ryken T, Newton HB. Survival outcomes and safety of carmustine wafers in the treatment of high-grade gliomas: a meta-analysis. J Neurooncol 2015; 122:367-82. [PMID: 25630625 PMCID: PMC4368843 DOI: 10.1007/s11060-015-1724-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 01/19/2015] [Indexed: 11/24/2022]
Abstract
Carmustine wafers (CW; Gliadel(®) wafers) are approved to treat newly-diagnosed high-grade glioma (HGG) and recurrent glioblastoma. Widespread use has been limited for several reasons, including concern that their use may preclude enrollment in subsequent clinical trials due to uncertainty about confounding of results and potential toxicities. This meta-analysis estimated survival following treatment with CW for HGG. A literature search identified relevant studies. Overall survival (OS), median survival, and adverse events (AEs) were summarized. Analysis of variance evaluated effects of treatment (CW vs non-CW) and diagnosis (new vs recurrent) on median survival. The analysis included 62 publications, which reported data for 60 studies (CW: n = 3,162; non-CW: n = 1,736). For newly-diagnosed HGG, 1-year OS was 67 % with CW and 48 % without; 2-year OS was 26 and 15 %, respectively; median survival was 16.4 ± 21.6 months and 13.1 ± 29.9 months, respectively. For recurrent HGG, 1-year OS was 37 % with CW and 34 % without; 2-year OS was 15 and 12 %, respectively; median survival was 9.7 ± 20.9 months and 8.6 ± 22.6 months, respectively. Effects of treatment (longer median survival with CW than without; P = 0.043) and diagnosis (longer median survival for newly-diagnosed HGG than recurrent; P < 0.001) on median survival were significant, with no significant treatment-by-diagnosis interaction (P = 0.620). The most common AE associated with wafer removal was surgical site infection (SSI); the most common AEs for repeat surgery were mass effect, SSI, hydrocephalus, cysts in resection cavity, acute hematoma, wound healing complications, and brain necrosis. These data may be useful in the context of utilizing CW in HGG management, and in designing future clinical trials to allow CW-treated patients to participate in experimental protocols.
Collapse
Affiliation(s)
- Sajeel A. Chowdhary
- Department of Neuro-Oncology, Florida Hospital Cancer Institute, 2501 N. Orange Avenue, Suite 286, Orlando, FL 32804 USA
| | - Timothy Ryken
- Department of Neurosurgery, Iowa Spine and Brain Institute, 2710 St. Francis Drive, Waterloo, IA 50702 USA
| | - Herbert B. Newton
- Departments of Neurology, Neurosurgery, and Oncology, Wexner Medical Center at the Ohio State University and James Cancer Hospital, M410-B Starling-Loving Hall, 320 West 10th Avenue, Columbus, OH 43210 USA
| |
Collapse
|
14
|
Walker AJ, Ruzevick J, Malayeri AA, Rigamonti D, Lim M, Redmond KJ, Kleinberg L. Postradiation imaging changes in the CNS: how can we differentiate between treatment effect and disease progression? Future Oncol 2015; 10:1277-97. [PMID: 24947265 DOI: 10.2217/fon.13.271] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A familiar challenge for neuroradiologists and neuro-oncologists is differentiating between radiation treatment effect and disease progression in the CNS. Both entities are characterized by an increase in contrast enhancement on MRI and present with similar clinical signs and symptoms that may occur either in close temporal proximity to the treatment or later in the disease course. When radiation-related imaging changes or clinical deterioration are mistaken for disease progression, patients may be subject to unnecessary surgery and/or a change from otherwise effective therapy. Similarly, when disease progression is mistaken for treatment effect, a potentially ineffective therapy may be continued in the face of progressive disease. Here we describe the three types of radiation injury to the brain based on the time to development of signs and symptoms--acute, subacute and late--and then review specific imaging changes after intensity-modulated radiation therapy, stereotactic radiosurgery and brachytherapy. We provide an overview of these phenomena in the treatment of a wide range of malignant and benign CNS illnesses. Finally, we review the published data regarding imaging techniques under investigation to address this well-known problem.
Collapse
Affiliation(s)
- Amanda J Walker
- Department of Radiation Oncology & Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Rhun EL, Taillibert S, Chamberlain MC. The future of high-grade glioma: Where we are and where are we going. Surg Neurol Int 2015; 6:S9-S44. [PMID: 25722939 PMCID: PMC4338495 DOI: 10.4103/2152-7806.151331] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/15/2014] [Indexed: 01/12/2023] Open
Abstract
High-grade glioma (HGG) are optimally treated with maximum safe surgery, followed by radiotherapy (RT) and/or systemic chemotherapy (CT). Recently, the treatment of newly diagnosed anaplastic glioma (AG) has changed, particularly in patients with 1p19q codeleted tumors. Results of trials currenlty ongoing are likely to determine the best standard of care for patients with noncodeleted AG tumors. Trials in AG illustrate the importance of molecular characterization, which are germane to both prognosis and treatment. In contrast, efforts to improve the current standard of care of newly diagnosed glioblastoma (GB) with, for example, the addition of bevacizumab (BEV), have been largely disappointing and furthermore molecular characterization has not changed therapy except in elderly patients. Novel approaches, such as vaccine-based immunotherapy, for newly diagnosed GB are currently being pursued in multiple clinical trials. Recurrent disease, an event inevitable in nearly all patients with HGG, continues to be a challenge. Both recurrent GB and AG are managed in similar manner and when feasible re-resection is often suggested notwithstanding limited data to suggest benefit from repeat surgery. Occassional patients may be candidates for re-irradiation but again there is a paucity of data to commend this therapy and only a minority of selected patients are eligible for this approach. Consequently systemic therapy continues to be the most often utilized treatment in recurrent HGG. Choice of therapy, however, varies and revolves around re-challenge with temozolomide (TMZ), use of a nitrosourea (most often lomustine; CCNU) or BEV, the most frequently used angiogenic inhibitor. Nevertheless, no clear standard recommendation regarding the prefered agent or combination of agents is avaliable. Prognosis after progression of a HGG remains poor, with an unmet need to improve therapy.
Collapse
Affiliation(s)
- Emilie Le Rhun
- Department of Neuro-oncology, Roger Salengro Hospital, University Hospital, Lille, and Neurology, Department of Medical Oncology, Oscar Lambret Center, Lille, France, Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Lille 1 University, Villeneuve D’Ascq, France
| | - Sophie Taillibert
- Neurology, Mazarin and Radiation Oncology, Pitié Salpétrière Hospital, University Pierre et Marie Curie, Paris VI, Paris, France
| | - Marc C. Chamberlain
- Department of Neurology and Neurological Surgery, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
16
|
Nabors LB, Ammirati M, Bierman PJ, Brem H, Butowski N, Chamberlain MC, DeAngelis LM, Fenstermaker RA, Friedman A, Gilbert MR, Hesser D, Holdhoff M, Junck L, Lawson R, Loeffler JS, Maor MH, Moots PL, Morrison T, Mrugala MM, Newton HB, Portnow J, Raizer JJ, Recht L, Shrieve DC, Sills AK, Tran D, Tran N, Vrionis FD, Wen PY, McMillian N, Ho M. Central nervous system cancers. J Natl Compr Canc Netw 2014; 11:1114-51. [PMID: 24029126 DOI: 10.6004/jnccn.2013.0132] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Primary and metastatic tumors of the central nervous system are a heterogeneous group of neoplasms with varied outcomes and management strategies. Recently, improved survival observed in 2 randomized clinical trials established combined chemotherapy and radiation as the new standard for treating patients with pure or mixed anaplastic oligodendroglioma harboring the 1p/19q codeletion. For metastatic disease, increasing evidence supports the efficacy of stereotactic radiosurgery in treating patients with multiple metastatic lesions but low overall tumor volume. These guidelines provide recommendations on the diagnosis and management of this group of diseases based on clinical evidence and panel consensus. This version includes expert advice on the management of low-grade infiltrative astrocytomas, oligodendrogliomas, anaplastic gliomas, glioblastomas, medulloblastomas, supratentorial primitive neuroectodermal tumors, and brain metastases. The full online version, available at NCCN. org, contains recommendations on additional subtypes.
Collapse
|
17
|
Samis Zella MA, Wallocha M, Slotty PJ, Isik G, Hänggi D, Schroeteler J, Ewelt C, Steiger HJ, Sabel M. Evaluation of post-operative complications associated with repeat resection and BCNU wafer implantation in recurrent glioblastoma. Acta Neurochir (Wien) 2014; 156:313-23. [PMID: 24287680 DOI: 10.1007/s00701-013-1931-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/21/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND Patients with glioblastoma treated with BCNU wafer implantation for recurrence frequently receive frontline chemoradiotherapy with temozolomide as part of the Stupp protocol. A retrospective investigation was conducted of surgical complications in a cohort of these patients treated at a single institution. METHODS We searched our institutional database for patients treated between January 2006 and October 2012 who had recurrent glioblastoma previously treated with open surgery followed by the Stupp protocol and then underwent repeat resection with or without BCNU wafers for recurrent disease. Rates of select post-operative complications within 3 months of surgery were estimated. RESULTS We identified 95 patients with glioblastoma who underwent resection followed by the Stupp protocol as frontline treatment. At disease recurrence (first and second recurrence), 63 patients underwent repeat resection with BCNU wafer implantation and 32 without implantation. Generally, BCNU wafer use was associated with minor to moderate increases in rates of select complications versus non-implantation-wound healing abnormalities (14.2 vs. 6.2 %), cerebrospinal fluid leak (7.9 vs. 3.1 %), hydrocephalus requiring ventriculoperitoneal shunt (6.3 vs. 9.3 %), chemical meningitis (3.1 vs. 0 %), cerebral infections (3.1 vs. 0 %), cyst formation (3.1 vs. 3.1 %), cerebral edema (4.7 vs. 0 %), and empyema formations (1.5 vs. 0 %). Performance status was well maintained post-operatively in both groups. Median progression-free survival from the time of first recurrence was 6.0 and 5.0 months, respectively. CONCLUSIONS The use of the Stupp protocol as frontline therapy in patients with glioblastoma does not preclude the use of BCNU wafers at the time of progression.
Collapse
Affiliation(s)
- Maria Angela Samis Zella
- Department of Neurosurgery, Heinrich Heine University Hospital Düsseldorf, Medical Faculty, Moorenstraße 5, 40225, Düsseldorf, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Phenotypic and functional characterization of Glioblastoma cancer stem cells identified through 5-aminolevulinic acid-assisted surgery [corrected]. J Neurooncol 2014; 116:505-13. [PMID: 24401960 DOI: 10.1007/s11060-013-1348-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 12/29/2013] [Indexed: 10/25/2022]
Abstract
5-aminolevulinic acid (5-ALA) introduction in the surgical management of Glioblastoma (GBM) enables the intra-operatively identification of cancer cells in the mass by means of fluorescence. Here, we analyzed the phenotype of GBM cells isolated from distinct tumour areas determined by 5-ALA (tumour core, 5-ALA intense and vague layers) and the potency of 5-ALA labelling in identifying GBM cells and cancer stem cells (CSCs) in the mass. 5-ALA identified distinct layers in the mass, with less differentiated cells residing in the core of the tumour. 5-ALA was able to stain up to 68.5% of CD133(+) cells in the 5-ALA intense layer and, although 5-ALA(+) cells retrieved from different tumour areas contained a similar proportion of CD133(+) cells (range 27.5-35.6%), those from the vague layer displayed the lowest ability to self-renew. In conclusion, our data demonstrate that a substantial amount of GBM cells and CSCs in the mass are able to avoid 5-ALA labelling and support the presence of heterogenic CSC populations in the GBM mass.
Collapse
|
19
|
Fine D, Grattoni A, Goodall R, Bansal SS, Chiappini C, Hosali S, van de Ven AL, Srinivasan S, Liu X, Godin B, Brousseau L, Yazdi IK, Fernandez-Moure J, Tasciotti E, Wu HJ, Hu Y, Klemm S, Ferrari M. Silicon micro- and nanofabrication for medicine. Adv Healthc Mater 2013; 2:632-66. [PMID: 23584841 PMCID: PMC3777663 DOI: 10.1002/adhm.201200214] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/31/2012] [Indexed: 12/13/2022]
Abstract
This manuscript constitutes a review of several innovative biomedical technologies fabricated using the precision and accuracy of silicon micro- and nanofabrication. The technologies to be reviewed are subcutaneous nanochannel drug delivery implants for the continuous tunable zero-order release of therapeutics, multi-stage logic embedded vectors for the targeted systemic distribution of both therapeutic and imaging contrast agents, silicon and porous silicon nanowires for investigating cellular interactions and processes as well as for molecular and drug delivery applications, porous silicon (pSi) as inclusions into biocomposites for tissue engineering, especially as it applies to bone repair and regrowth, and porous silica chips for proteomic profiling. In the case of the biocomposites, the specifically designed pSi inclusions not only add to the structural robustness, but can also promote tissue and bone regrowth, fight infection, and reduce pain by releasing stimulating factors and other therapeutic agents stored within their porous network. The common material thread throughout all of these constructs, silicon and its associated dielectrics (silicon dioxide, silicon nitride, etc.), can be precisely and accurately machined using the same scalable micro- and nanofabrication protocols that are ubiquitous within the semiconductor industry. These techniques lend themselves to the high throughput production of exquisitely defined and monodispersed nanoscale features that should eliminate architectural randomness as a source of experimental variation thereby potentially leading to more rapid clinical translation.
Collapse
Affiliation(s)
- Daniel Fine
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Veringa SJE, Biesmans D, van Vuurden DG, Jansen MHA, Wedekind LE, Horsman I, Wesseling P, Vandertop WP, Noske DP, Kaspers GJL, Hulleman E. In vitro drug response and efflux transporters associated with drug resistance in pediatric high grade glioma and diffuse intrinsic pontine glioma. PLoS One 2013; 8:e61512. [PMID: 23637844 PMCID: PMC3639279 DOI: 10.1371/journal.pone.0061512] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 03/09/2013] [Indexed: 12/04/2022] Open
Abstract
Pediatric high-grade gliomas (pHGG), including diffuse intrinsic pontine gliomas (DIPG), are the leading cause of cancer-related death in children. While it is clear that surgery (if possible), and radiotherapy are beneficial for treatment, the role of chemotherapy for these tumors is still unclear. Therefore, we performed an in vitro drug screen on primary glioma cells, including three DIPG cultures, to determine drug sensitivity of these tumours, without the possible confounding effect of insufficient drug delivery. This screen revealed a high in vitro cytotoxicity for melphalan, doxorubicine, mitoxantrone, and BCNU, and for the novel, targeted agents vandetanib and bortezomib in pHGG and DIPG cells. We subsequently determined the expression of the drug efflux transporters P-gp, BCRP1, and MRP1 in glioma cultures and their corresponding tumor tissues. Results indicate the presence of P-gp, MRP1 and BCRP1 in the tumor vasculature, and expression of MRP1 in the glioma cells themselves. Our results show that pediatric glioma and DIPG tumors per se are not resistant to chemotherapy. Treatment failure observed in clinical trials, may rather be contributed to the presence of drug efflux transporters that constitute a first line of drug resistance located at the blood-brain barrier or other resistance mechanism. As such, we suggest that alternative ways of drug delivery may offer new possibilities for the treatment of pediatric high-grade glioma patients, and DIPG in particular.
Collapse
Affiliation(s)
- Susanna J. E. Veringa
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Neuro-Oncology Research Group, VU University Medical Center, Amsterdam, The Netherlands
| | - Dennis Biesmans
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Neuro-Oncology Research Group, VU University Medical Center, Amsterdam, The Netherlands
| | - Dannis G. van Vuurden
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Neuro-Oncology Research Group, VU University Medical Center, Amsterdam, The Netherlands
| | - Marc H. A. Jansen
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Laurine E. Wedekind
- Department of Neuro-Oncology Research Group, VU University Medical Center, Amsterdam, The Netherlands
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Ilona Horsman
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Pieter Wesseling
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | - David P. Noske
- Department of Neuro-Oncology Research Group, VU University Medical Center, Amsterdam, The Netherlands
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - GertJan J. L. Kaspers
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Esther Hulleman
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Neuro-Oncology Research Group, VU University Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
21
|
Yousaf J, Hills C, Dixit S, Achawal S, O'Brien D, Greenman J, Scott IS. Markers of cell division cycle in glioblastoma: significance in prediction of treatment response and patient prognosis. Br J Neurosurg 2013; 27:752-8. [PMID: 23477614 DOI: 10.3109/02688697.2013.773287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate whether expression of regulatory components of the cell division cycle can be used independently to predict survival and response to adjuvant therapy in glioblastomas. METHOD A tissue micro-array, constructed using glioblastomas (n = 66), was stained using antibodies against minichromosome maintenance protein-2 (Mcm-2), expressed throughout the cell-division cycle; geminin, a protein that prevents re-initiation of DNA replication; and cyclin A, an S-phase cyclin. A semi-quantitative labelling index (LI) was calculated using an average of 18 high-power fields (hpf) in three replicate cores. The patients were divided into two groups: Group 1 (n = 50) underwent surgery and radiotherapy with 24 patients receiving temozolomide, and Group 2 (n = 16) received surgical treatment only. RESULTS The LIs (median +/- IQR) for Group 1 were as follows: Mcm-2, 36.7% (22.9%-51.8%); geminin, 7.8% (5.8%-10.5%); and cyclin A, 4.2% (2.4%-6.9%). Elevated LIs, higher than the median, for geminin and cyclin A correlated with prolonged survival when the tumours received adjuvant therapy (Kaplan-Meier curves, p = 0.0046 and p = 0.0063 for geminin and cyclin A, respectively). Linear regression analysis revealed positive correlations with survival for Mcm-2 (p = 0.0376), geminin (p = 0.0006) and cyclin A (p = 0.004). In Group 2, there was no relationship between the patient survival and the LI for any marker. CONCLUSIONS Geminin and cyclin A, each show potential as independent prognostic markers in glioblastomas receiving adjuvant therapy. This may reflect the fact that both geminin and cyclin A estimate proliferating tumour cell subpopulations sensitive to radio/chemotherapy. These markers could provide valuable prognostic information, even in small biopsies, especially if combined with O(6)MGMT expression and 1p;19q deletion status.
Collapse
Affiliation(s)
- J Yousaf
- Departments of Neurosurgery, Hull & East Yorkshire Hospitals NHS Trust , Hull Royal Infirmary, Hull , UK
| | | | | | | | | | | | | |
Collapse
|
22
|
Salmaggi A, Milanesi I, Silvani A, Gaviani P, Marchetti M, Fariselli L, Solero CL, Maccagnano C, Casali C, Guzzetti S, Pollo B, Ciusani E, Dimeco F. Prospective study of carmustine wafers in combination with 6-month metronomic temozolomide and radiation therapy in newly diagnosed glioblastoma: preliminary results. J Neurosurg 2013; 118:821-9. [PMID: 23350777 DOI: 10.3171/2012.12.jns111893] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Locoregional chemotherapy with carmustine wafers, positioned at surgery and followed by radiation therapy, has been shown to prolong survival in patients with newly diagnosed glioblastoma, as has concomitant radiochemotherapy with temozolomide. A combination of carmustine wafers with the Stupp treatment regimen has only been investigated in retrospective studies. METHODS In a single-institution prospective study, the authors assessed 12-month progression-free survival (PFS), toxicity, and overall survival in patients with glioblastoma treated with surgery, carmustine wafers, radiotherapy, and 6-month metronomic temozolomide chemotherapy. Thirty-five patients with de novo glioblastoma, between the ages of 18 and 70 years, and with Karnofsky Performance Scale scores of at least 70, were included in the study. Patients were followed monthly and assessed using MRI every 2 months. RESULTS After a median follow-up of 15 months, the median time to tumor progression was 12.5 months and median survival was 17.8 months. Due to toxicity (mostly hematological), 7 patients had to prematurely stop temozolomide treatment. Twenty-two patients developed Grade 3 CD4(+) lymphocytopenia. Three patients developed oral-esophageal candidiasis, 2 developed pneumonia, and 1 developed a dorsolumbar zoster. Early intracranial hypertension was observed in 1 patient, and 1 was treated empirically for suspected brain abscess. One patient died of Legionella pneumonia soon after repeat surgery. CONCLUSIONS Overall, this treatment schedule produced promising results in terms of PFS without a marked increase in toxicities as compared with the Stupp regimen. However, the gain in median survival using this schedule was less clear. Only prospective comparative trials will determine whether these preliminary results will translate into a long-term survival advantage with an acceptable toxicity profile.
Collapse
Affiliation(s)
- Andrea Salmaggi
- Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rappa F, Cappello F, Halatsch ME, Scheuerle A, Kast RE. Aldehyde dehydrogenase and HSP90 co-localize in human glioblastoma biopsy cells. Biochimie 2012. [PMID: 23201460 DOI: 10.1016/j.biochi.2012.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The concept of a stem cell subpopulation as understood from normal epithelial tissue or bone marrow function has been extended to our understanding of cancer tissue and is now the target of treatment efforts specifically directed to this subpopulation. In glioblastoma, as well as in other cancers, increased expression of aldehyde dehydrogenase (ALDH) has been found localized within a minority sub-population of tumor cells which demonstrate stem cell properties. A separate body of research associated increased expression of heat-shock protein-90 (HSP90) with stem cell attributes. We present here results from our initial immunohistochemistry study of human glioblastoma biopsy tissue where both ALDH and HSP90 tended to be co-expressed in high amounts in the same minority of cells. Since 12% of all cells in the six biopsies studied were ALDH positive and 17% were HSP90 positive, by chance alone 2% would have been expected to be positive for both. In fact 7% of all cells simultaneously expressed both markers-a significant difference (p = 0.037). That two previously identified proteins associated with stem cell attributes tend to be co-expressed in the same individual glioblastoma cells might have clinical utility. Disulfiram, used to treat alcoholism for half-a century now, is a potent ALDH inhibitor and the old anti-viral drug ritonavir inhibits HSP90. These should be explored for the potential to retard aspects of glioblastoma stem cells' function subserved by ALDH and HSP90.
Collapse
Affiliation(s)
- F Rappa
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | | | | | | | | |
Collapse
|
24
|
Safety and efficacy of Gliadel wafers for newly diagnosed and recurrent glioblastomas. Acta Neurochir (Wien) 2012; 154:1379-81. [PMID: 22718139 DOI: 10.1007/s00701-012-1414-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 06/01/2012] [Indexed: 10/28/2022]
|
25
|
Florio T, Barbieri F. The status of the art of human malignant glioma management: the promising role of targeting tumor-initiating cells. Drug Discov Today 2012; 17:1103-10. [PMID: 22704957 DOI: 10.1016/j.drudis.2012.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/17/2012] [Accepted: 06/06/2012] [Indexed: 10/28/2022]
Abstract
Glioblastoma is the most prevalent and malignant form of brain cancer, but the current available multimodality treatments yield poor survival improvement. Thus, innovative therapeutic strategies represent the challenging topic for glioblastoma management. Multidisciplinary advances, supporting current standard of care therapies and investigational trials that reveal potential drug targets for glioblastoma are reviewed. A radical change in glioblastoma therapeutic approaches could arise from the identification of cancer stem cells, putative tumor-initiating cells involved in tumor initiation, progression and resistance, as innovative drug target. Still controversial identification of markers and molecular regulators in glioma tumor-initiating cells and novel approaches targeting these cells are discussed.
Collapse
Affiliation(s)
- Tullio Florio
- Section of Pharmacology, Department of Internal Medicine and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | | |
Collapse
|
26
|
Nieder C, Pawinski A, Dalhaug A. Contribution of case reports to glioblastoma research: systematic review and analysis of pattern of citation. Br J Neurosurg 2012; 26:809-12. [PMID: 22686129 DOI: 10.3109/02688697.2012.692842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Research activity related to different aspects of diagnosis, epidemiology and treatment of glioblastoma has increased during recent years. Authors of scientific publications are able to choose between different formats including case reports. Little is known about their influence on advancement of the field or scientific merits. Do glioblastoma case reports attract attention or do they go largely unrecognized? METHODS Different measures of impact, visibility and quality of published research are available, each with its own pros and cons. For the present evaluation (to the best of our knowledge the first one on this subject), article citation rate was chosen. The databases PubMed and Scopus were searched for articles that were published during the 5-year time period between 2006 and 2010. RESULTS We identified 5831 articles dealing with glioblastoma. Of these, 286 (4.9%) reported on single patient cases and 15 (0.26%) were reports of two cases. The median number of citations was 1 (range 0-37). Stratified by year of publication, the median number ranged from 0 for those published in 2010 to 3 for those published in 2006. Citations appeared to gradually increase during the first 2-3 years after publication. As compared to other articles, case reports were significantly less likely to receive a large number of citations. CONCLUSION Compared to other formats, the proportion of case reports was limited and few of them were highly cited. It cannot be excluded that case reports without citation provide interesting information to some readers. However, their educational value is difficult to quantify.
Collapse
Affiliation(s)
- Carsten Nieder
- Department of Oncology and Palliative Medicine, Nordland Hospital, Bodø, Norway.
| | | | | |
Collapse
|
27
|
Kast RE, Lefranc F, Karpel-Massler G, Halatsch ME. Why dapsone stops seizures and may stop neutrophils' delivery of VEGF to glioblastoma. Br J Neurosurg 2012; 26:813-7. [PMID: 22551309 DOI: 10.3109/02688697.2012.674577] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lopez-Gomez et al. recently published remarkable but mechanistically unexplained empirical evidence that the old antibiotic dapsone has antiepileptic activity. We addressed the question "Why should a sulfone antibiotic reduce seizures?". We report here our conclusions based on data from past studies that seizures are associated with elevated interleukin-8 (IL-8) and that dapsone inhibits IL-8 release and function in several different clinical and experimental contexts. Diverse CNS insults cause an increase in CNS IL-8. Thus, the pro-inflammatory environment generated by increase IL-8 leads to a lower seizure threshold. Together this evidence indicates dapsone exerts anti-seizure activity by diminishing IL-8 signalling. Since IL-8 is clearly upregulated in glioblastoma and contributes to the florid angiogenesis of that disease, and since interference with IL-8 function has been shown to inhibit glioblastoma invasion and growth in several experimental models, and dapsone has been repeatedly been shown to clinically inhibit IL-8 function when used to treat human neutrophilic dermatoses, we believe that dapsone thereby reduces seizures by countering IL-8 function and may similarly retard glioblastoma growth by such anti-IL-8 function.
Collapse
Affiliation(s)
- R E Kast
- Department of Psychiatry, University of Vermont, Burlington, VT 05401, USA.
| | | | | | | |
Collapse
|
28
|
Abstract
Research into treatments for diseases of the CNS has made impressive strides in the past few decades, but therapeutic options are limited for many patients with CNS disorders. Nanotechnology has emerged as an exciting and promising new means of treating neurological disease, with the potential to fundamentally change the way we approach CNS-targeted therapeutics. Molecules can be nanoengineered to cross the blood-brain barrier, target specific cell or signalling systems, respond to endogenous stimuli, or act as vehicles for gene delivery, or as a matrix to promote axon elongation and support cell survival. The wide variety of available nanotechnologies allows the selection of a nanoscale material with the characteristics best suited to the therapeutic challenges posed by an individual CNS disorder. In this Review, we describe recent advances in the development of nanotechnology for the treatment of neurological disorders-in particular, neurodegenerative disease and malignant brain tumours-and for the promotion of neuroregeneration.
Collapse
Affiliation(s)
- Maya Srikanth
- Department of Neurology, Northwestern University Feinberg School of Medicine, Ward 10-233, 303 E. Chicago Avenue, Chicago, IL 60611, USA. maya@ fsm.northwestern.edu
| | | |
Collapse
|
29
|
Salmaggi A, Duri S, Silvani A, Gaviani P, Milanesi I, Casali C, Di Meco F. Loco-regional treatments in first-diagnosis glioblastoma: literature review on association between Stupp protocol and Gliadel. Neurol Sci 2012; 32 Suppl 2:S241-5. [PMID: 21983866 DOI: 10.1007/s10072-011-0797-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Loco-regional chemotherapy with carmustine wafers (Gliadel) positioned at surgery and followed by radiotherapy has been shown to prolong survival in first-diagnosis glioblastoma, as well as concomitant radiochemotherapy with temozolomide. The combination of Gliadel with the Stupp protocol has mostly been investigated in retrospective studies. objective of this study was to review the literature of efficacy and toxicities in patients with first-diagnosis glioblastoma treated with surgery, Gliadel, radiotherapy and temozolomide chemotherapy. The data in the literature regarding the combined use of Gliadel with chemotherapy, concomitant with radiotherapy and adjuvant temozolomide for glioblastoma was analyzed and compared. The results on survival and toxicity are summarized. The combination of Gliadel and radiotherapy with temozolomide is well tolerated and may increase survival without a substantial increase in major toxicity. However, only prospective comparative studies will be able to address the issue of true advantage in survival with this combination.
Collapse
Affiliation(s)
- Andrea Salmaggi
- Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133 Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
30
|
Retrospective Comparison of Chemoradiotherapy Followed by Adjuvant Chemotherapy, With or Without Previous Gliadel Implantation (Carmustine) After Initial Surgery in Patients With Newly Diagnosed High-Grade Gliomas: In Regard to Noel et al. (Int J Radiat Oncol Biol Phys 2011; DOI: 10.1016/j.ijrobp.2010.11.073). Int J Radiat Oncol Biol Phys 2011; 81:1593. [DOI: 10.1016/j.ijrobp.2011.06.1966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/04/2011] [Indexed: 11/23/2022]
|