1
|
Gil-Jardiné C, Payen JF, Bernard R, Bobbia X, Bouzat P, Catoire P, Chauvin A, Claessens YE, Douay B, Dubucs X, Galanaud D, Gauss T, Gauvrit JY, Geeraerts T, Glize B, Goddet S, Godier A, Le Borgne P, Rousseau G, Sapin V, Velly L, Viglino D, Vigue B, Cuvillon P, Frasca D, Claret PG. Management of patients suffering from mild traumatic brain injury 2023. Anaesth Crit Care Pain Med 2023; 42:101260. [PMID: 37285919 DOI: 10.1016/j.accpm.2023.101260] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To develop a multidisciplinary French reference that addresses initial pre- and in-hospital management of a mild traumatic brain injury patient. DESIGN A panel of 22 experts was formed on request from the French Society of Emergency Medicine (SFMU) and the French Society of Anaesthesiology and Critical Care Medicine (SFAR). A policy of declaration and monitoring of links of interest was applied and respected throughout the process of producing the guidelines. Similarly, no funding was received from any company marketing a health product (drug or medical device). The expert panel had to respect and follow the Grade® (Grading of Recommendations Assessment, Development and Evaluation) methodology to evaluate the quality of the evidence on which the recommendations were based. Given the impossibility of obtaining a high level of evidence for most of the recommendations, it was decided to adopt a "Recommendations for Professional Practice" (RPP) format, rather than a Formalized Expert Recommendation (FER) format, and to formulate the recommendations using the terminology of the SFMU and SFAR Guidelines. METHODS Three fields were defined: 1) pre-hospital assessment, 2) emergency room management, and 3) emergency room discharge modalities. The group assessed 11 questions related to mild traumatic brain injury. Each question was formulated using a PICO (Patients Intervention Comparison Outcome) format. RESULTS The experts' synthesis work and the application of the GRADE® method resulted in the formulation of 14 recommendations. After two rounds of rating, strong agreement was obtained for all recommendations. For one question, no recommendation could be made. CONCLUSION There was strong agreement among the experts on important, transdisciplinary recommendations, the purpose of which is to improve management practices for patients with mild head injury.
Collapse
Affiliation(s)
- Cédric Gil-Jardiné
- Centre Hospitalier Universitaire de Bordeaux, Hôpital Pellegrin, Service des Urgences-Adultes, Population Health, INSERM U1219, équipe aHeAD, Université de Bordeaux, Bordeaux, France.
| | - Jean-François Payen
- Department of Anesthesiology and Critical Care, Grenoble Alpes University Hospital, University Grenoble Alpes, F-38000 Grenoble, France
| | - Rémy Bernard
- Department of Anaesthesiology and Critical Care, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Xavier Bobbia
- Montpellier University, UR UM 103 (IMAGINE), Department of Emergency Medicine, CHU Montpellier, Montpellier, France
| | - Pierre Bouzat
- Department of Anesthesiology and Critical Care, Grenoble Alpes University Hospital, University Grenoble Alpes, F-38000 Grenoble, France
| | - Pierre Catoire
- Emergency Consultant, Academic Clinical Fellow (Pitié-Salpétrière University, General Emergency Department, Paris) - Tactical Ultrasound Course for Ukraine (TUSC-UA) Course Director - Mehad, France
| | - Anthony Chauvin
- Service d'Accueil des Urgences/SMUR, CHU Lariboisière, Université de Paris - Inserm U942 MASCOT, Université de Paris, Paris, France
| | - Yann-Erick Claessens
- Département de Médecine d'urgence, Centre Hospitalier Princesse Grace, Avenue Pasteur, MC-98002, Monaco
| | - Bénédicte Douay
- SMUR/Service des Urgences, Hôpital Beaujon, AP-HP Nord, Clichy, France
| | - Xavier Dubucs
- Emergency Departement, Centre Hospitalo-Universitaire de Toulouse, Place du Docteur Baylac, 31300 Toulouse, France
| | - Damien Galanaud
- Service de Neuroradiologie, GH Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Tobias Gauss
- Department of Anesthesiology and Critical Care, Grenoble Alpes University Hospital, University Grenoble Alpes, F-38000 Grenoble, France
| | - Jean-Yves Gauvrit
- Service de Neuroradiologie, Hôpital Pontchaillou, CHU Rennes, Rennes, France
| | - Thomas Geeraerts
- Pole Anesthesie Réanimation et INSERM Tonic, CHU de Toulouse et Universite Toulouse 3, Toulouse, France
| | - Bertrand Glize
- PMR Department, CHU de Bordeaux, ACTIVE Team, BPH INSERM U1219, University of Bordeaux, France
| | - Sybille Goddet
- Samu-21, CHU de Dijon, SAU-Smur, CH du Creusot, Dijon, France
| | - Anne Godier
- Université Paris Cité, APHP, Hôpital Européen Georges Pompidou, Service d'anesthésie Réanimation and Inserm UMRS_1140, Paris, France
| | - Pierrick Le Borgne
- Emergency Department, University Hospitals of Strasbourg, 1 place de l'hôpital, 67000 Strasbourg, France - INSERM UMR 1260, Regenerative NanoMedicine (RNM), Fédération de Médecine Translationnelle (FMTS), Faculté de Médecine, Université de Strasbourg, 4 rue Kirschleger, 67085 Strasbourg Cedex, France
| | | | - Vincent Sapin
- Service de Biochimie et de Génétique Moléculaire, Centre de Biologie, CHU de Clermont-Ferrand, France
| | - Lionel Velly
- Department of Anaesthesiology and Critical Care Medicine, University Hospital Timone, Aix Marseille University, Marseille, France
| | - Damien Viglino
- University Grenoble-Alpes, Emergency Department, CHU Grenoble-Alpes, Grenoble, France - HP2 Laboratory INSERM U1300, Grenoble, France
| | - Bernard Vigue
- Département d'Anesthésie Réanimation, Hôpital Universitaire de Bicêtre, Le Kremlin Bicêtre, France
| | - Philippe Cuvillon
- EA 2992 IMAGINE, Prévention et Prise en Charge de la Défaillance Circulatoire des Patients en état de Choc, Anaesthesiology Department, CHU Nîmes, University Montpellier, 30000 Nîmes, France
| | - Denis Frasca
- Université de Poitiers, UFR de Médecine-Pharmacie, Poitiers, France, Service d'Anesthésie, Réanimation et Médecine Péri-Opératoire, CHU de Poitiers, France, INSERM U1246, Methods in Patients-Centered Outcomes and Health Research - SPHERE, Nantes, France
| | | |
Collapse
|
2
|
Zhang J, Zhang H, Yan F, Zhang H, Zhang E, Wang X, Wei M, Pei Y, Yang Z, Li Y, Dong L, Wang X. Investigating the mechanism and prognosis of patients with disorders of consciousness on the basis of brain networks between the thalamus and whole-brain. Front Neurol 2022; 13:990686. [PMID: 36237619 PMCID: PMC9552841 DOI: 10.3389/fneur.2022.990686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeThis study aimed to investigate the changes in the functional connectivity between the bilateral thalamus and the whole-brain in patients with severe traumatic brain injury (sTBI) patients suffering from disorders of consciousness (DOC) and to explore their potential prognostic representation capacity.MethodsThe sTBI patients suffering from DOC and healthy controls underwent functional magnetic resonance imaging. We defined patients with the Extended Glasgow Outcome Score (GOS-E) ≥ 3 as the wake group and GOS-E = 2 as the coma group. The differences in functional connectivity between sTBI and healthy controls and between wake and coma groups were compared. Based on the brain regions with altered functional connectivity between wake and coma groups, they were divided into 26 regions of interest. Based on the Z-values of regions of interest, the receiver operating characteristic analysis was conducted to classify the prognosis of patients.ResultsA total of 28 patients and 15 healthy controls were finally included. Patients who had DOC indicated a significant disruption of functional connectivity between the bilateral thalamus and the whole-brain (FDR corrected, P < 0.0007). The functional connectivity strength (bilateral thalamus to whole-brain) was significantly different between coma patients who went on to wake and those who were eventually non-awake at 6 months after sTBI (Alphasim corrected, P < 0.05). Furthermore, the 26 regions of interest had a similar or even better prognostic distinction ability than the admission Glasgow coma score.ConclusionThe thalamus-based system of consciousness of sTBI patients suffering from DOC is disrupted. There are differences in the thalamus-to-whole-brain network between wake and coma groups and these differences have potential prognostic characterization capability.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Hongying Zhang
- Department of Radiology, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Fuli Yan
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Hengzhu Zhang
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Enpeng Zhang
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Xingdong Wang
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Min Wei
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Yunlong Pei
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Zhijie Yang
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Yuping Li
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Lun Dong
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, China
- Lun Dong
| | - Xiaodong Wang
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, China
- *Correspondence: Xiaodong Wang
| |
Collapse
|
3
|
Liu Z, Du S, Wu Y, Chen T, Luo X, Bi C, Lan S, Chen X, Liu J. Intracranial pressure after closure of dura predicts decompressive craniectomy in patients with head trauma. J Neurotrauma 2022; 39:1231-1239. [PMID: 35538792 DOI: 10.1089/neu.2021.0499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study aimed to address the risk factors of second decompressive craniectomy (DC) in patients with traumatic brain injury (TBI) who initially underwent mass lesion evacuation, but no primary DC. Patients were enrolled if they had a hospital visit to Xiangya Hospital, Central South University with acute closed TBI from January 1, 2017, to December 31, 2019, and had undergone craniotomic mass lesion evacuation. Socio-demographic information, computed tomography (CT) information, clinical profiles, and surgical information were obtained from an electronic database. Twenty-four patients who had undergone a second DC (SDC) and 39 patients who did not (NSO) were included in the analysis. The prevailing lesions differed between the groups (P = 0.010). The SDC group had more compressed/obliterated basal cisterns than the NSO group (P = 0.028). After closure of dura, the SDC group also had higher intracranial pressure (ICP) than the NSO group (10.9 mmHg vs. 6.5 mmHg, P = 0.005). Binary logistic regression indicated that ICP after dura closure was an independent predictor of second DC (OR = 1.317, P = 0.011). A model using ICP after dura closure alone had an area under the curve value of 0.757 in its receiver operating characteristic curve. An ICP above 10.5 mmHg after closure of dura for the prediction of second DC had a sensitivity of 56.3% and specificity of 92.6%.
Collapse
Affiliation(s)
- Ziyuan Liu
- Xiangya Hospital Central South University, 159374, Department of Neurosurgery, No.87 Xiangya Road, Changsha, China, 410008;
| | - Shan Du
- Xiangya Hospital Central South University, 159374, Department of Gastroenterology, Changsha, China;
| | - Yun Wu
- Xiangya Hospital Central South University, 159374, Department of Neurosurgery, Changsha, China;
| | - Tiange Chen
- Xiangya Hospital Central South University, 159374, Department of Neurosurgery, Changsha, China;
| | - Xiangying Luo
- Xiangya Hospital Central South University, 159374, Department of Neurosurgery, Changsha, China;
| | - Changlong Bi
- Xiangya Hospital Central South University, 159374, Department of Neurosurgery, No.87 Xiangya Road, Changsha, China, 410008;
| | - Song Lan
- Xiangya Hospital Central South University, 159374, Department of Neurosurgery, No.87 Xiangya Road, Changsha, China, 410008;
| | - Xin Chen
- Xiangya Hospital Central South University, 159374, Neurosurgery, Changsha, Hunan, China.,Xiangya Hospital Central South University, 159374, National Clinical Medical Research Center for Geriatric Diseases, Changsha, Hunan, China;
| | - Jinfang Liu
- Xiangya Hospital Central South University, 159374, Department of Neurosurgery, Changsha, Hunan, China.,Xiangya Hospital Central South University, 159374, National Clinical Medical Research Center for Geriatric Diseases, Changsha, Hunan, China;
| |
Collapse
|
4
|
Anania P, Battaglini D, Miller JP, Balestrino A, Prior A, D'Andrea A, Badaloni F, Pelosi P, Robba C, Zona G, Fiaschi P. Escalation therapy in severe traumatic brain injury: how long is intracranial pressure monitoring necessary? Neurosurg Rev 2021; 44:2415-2423. [PMID: 33215367 PMCID: PMC7676754 DOI: 10.1007/s10143-020-01438-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/29/2020] [Accepted: 11/11/2020] [Indexed: 11/24/2022]
Abstract
Traumatic brain injury frequently causes an elevation of intracranial pressure (ICP) that could lead to reduction of cerebral perfusion pressure and cause brain ischemia. Invasive ICP monitoring is recommended by international guidelines, in order to reduce the incidence of secondary brain injury; although rare, the complications related to ICP probes could be dependent on the duration of monitoring. The aim of this manuscript is to clarify the appropriate timing for removal and management of invasive ICP monitoring, in order to reduce the risk of related complications and guarantee adequate cerebral autoregulatory control. There is no universal consensus concerning the duration of invasive ICP monitoring and its related complications, although the pertinent literature seems to show that the longer is the monitoring maintenance, the higher is the risk of technical issues. Besides, upon 72 h of normal ICP values or less than 72 h if the first computed tomography scan is normal (none or minimal signs of injury) and the neurological exam is available (allowing to observe variations and possible occurrence of new-onset pathological response), the removal of invasive ICP monitoring can be justified. The availability of non-invasive monitoring systems should be considered to follow up patients' clinical course after invasive ICP probe removal or for substituting the invasive monitoring in case of contraindication to its placement. Recently, optic nerve sheath diameter and straight sinus systolic flow velocity evaluation through ultrasound methods showed a good correlation with ICP values, demonstrating their potential role in place of invasive monitoring or in the early weaning phase from the invasive ICP monitoring.
Collapse
Affiliation(s)
- Pasquale Anania
- Department of Neurosurgery, Policlinico San Martino Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy.
| | - Denise Battaglini
- Anesthesia and Intensive Care, Policlinico San Martino Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - John P Miller
- Louisiana State University, Health Sciences University, New Orleans, LA, USA
| | - Alberto Balestrino
- Department of Neurosurgery, Policlinico San Martino Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Alessandro Prior
- Department of Neurosurgery, Policlinico San Martino Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Alessandro D'Andrea
- Department of Neurosurgery, Policlinico San Martino Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Filippo Badaloni
- Division of Neurosurgery, IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Paolo Pelosi
- Anesthesia and Intensive Care, Policlinico San Martino Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa, Genoa, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, Policlinico San Martino Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa, Genoa, Italy
| | - Gianluigi Zona
- Department of Neurosurgery, Policlinico San Martino Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal And Children (DINOGMI), University of Genoa, Genoa, Italy
| | - Pietro Fiaschi
- Department of Neurosurgery, Policlinico San Martino Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal And Children (DINOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
5
|
Grevfors N, Lindblad C, Nelson DW, Svensson M, Thelin EP, Rubenson Wahlin R. Delayed Neurosurgical Intervention in Traumatic Brain Injury Patients Referred From Primary Hospitals Is Not Associated With an Unfavorable Outcome. Front Neurol 2021; 11:610192. [PMID: 33519689 PMCID: PMC7839281 DOI: 10.3389/fneur.2020.610192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/03/2020] [Indexed: 01/29/2023] Open
Abstract
Background: Secondary transports of patients suffering from traumatic brain injury (TBI) may result in a delayed management and neurosurgical intervention, which is potentially detrimental. The aim of this study was to study the effect of triaging and delayed transfers on outcome, specifically studying time to diagnostics and neurosurgical management. Methods: This was a retrospective observational cohort study of TBI patients in need of neurosurgical care, 15 years and older, in the Stockholm Region, Sweden, from 2008 throughout 2014. Data were collected from pre-hospital and in-hospital charts. Known TBI outcome predictors, including the protein biomarker of brain injury S100B, were used to assess injury severity. Characteristics and outcomes of direct trauma center (TC) and those of secondary transfers were evaluated and compared. Functional outcome, using the Glasgow Outcome Scale, was assessed in survivors at 6–12 months after trauma. Regression models, including propensity score balanced models, were used for endpoint assessment. Results: A total of n = 457 TBI patients were included; n = 320 (70%) patients were direct TC transfers, whereas n = 137 (30%) were secondary referrals. In all, n = 295 required neurosurgery for the first 24 h after trauma (about 75% of each subgroup). Direct TC transfers were more severely injured (median Glasgow Coma Scale 8 vs. 13) and more often suffered a high energy trauma (31 vs. 2.9%) than secondary referrals. Admission S100B was higher in the TC transfer group, though S100B levels 12–36 h after trauma were similar between cohorts. Direct or indirect TC transfer could be predicted using propensity scoring. The secondary referrals had a shorter distance to the primary hospital, but had later radiology and surgery than the TC group (all p < 0.001). In adjusted multivariable analyses with and without propensity matching, direct or secondary transfers were not found to be significantly related to outcome. Time from trauma to surgery did not affect outcome. Conclusions: TBI patients secondary transported to a TC had surgical intervention performed hours later, though this did not affect outcome, presumably demonstrating that accurate pre-hospital triaging was performed. This indicates that for selected patients, a wait-and-see approach with delayed neurosurgical intervention is not necessarily detrimental, but warrants further research.
Collapse
Affiliation(s)
- Niklas Grevfors
- Division of Perioperative Medicine and Intensive Care (PMI), Department of Anesthesiology, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Lindblad
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - David W Nelson
- Division of Perioperative Medicine and Intensive Care (PMI), Department of Anesthesiology, Karolinska University Hospital, Stockholm, Sweden.,Section of Anesthesiology and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Svensson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Eric Peter Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Rebecka Rubenson Wahlin
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,Department of Anesthesia and Intensive Care, Södersjukhuset, Stockholm, Sweden.,Ambulance Medical Service in Stockholm (Ambulanssjukvården i Storstockholm AB), Stockholm, Sweden.,Academic EMS, Stockholm, Sweden
| |
Collapse
|
6
|
Battaglini D, Anania P, Rocco PRM, Brunetti I, Prior A, Zona G, Pelosi P, Fiaschi P. Escalate and De-Escalate Therapies for Intracranial Pressure Control in Traumatic Brain Injury. Front Neurol 2020; 11:564751. [PMID: 33324317 PMCID: PMC7724991 DOI: 10.3389/fneur.2020.564751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/30/2020] [Indexed: 12/22/2022] Open
Abstract
Severe traumatic brain injury (TBI) is frequently associated with an elevation of intracranial pressure (ICP), followed by cerebral perfusion pressure (CPP) reduction. Invasive monitoring of ICP is recommended to guide a step-by-step “staircase approach” which aims to normalize ICP values and reduce the risks of secondary damage. However, if such monitoring is not available clinical examination and radiological criteria should be used. A major concern is how to taper the therapies employed for ICP control. The aim of this manuscript is to review the criteria for escalating and withdrawing therapies in TBI patients. Each step of the staircase approach carries a risk of adverse effects related to the duration of treatment. Tapering of barbiturates should start once ICP control has been achieved for at least 24 h, although a period of 2–12 days is often required. Administration of hyperosmolar fluids should be avoided if ICP is normal. Sedation should be reduced after at least 24 h of controlled ICP to allow neurological examination. Removal of invasive ICP monitoring is suggested after 72 h of normal ICP. For patients who have undergone surgical decompression, cranioplasty represents the final step, and an earlier cranioplasty (15–90 days after decompression) seems to reduce the rate of infection, seizures, and hydrocephalus.
Collapse
Affiliation(s)
- Denise Battaglini
- Department of Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy
| | - Pasquale Anania
- Department of Neurosurgery, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil.,Rio de Janeiro Innovation Network in Nanosystems for Health-Nano SAÚDE/Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Iole Brunetti
- Department of Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy
| | - Alessandro Prior
- Department of Neurosurgery, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy
| | - Gianluigi Zona
- Department of Neurosurgery, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Paolo Pelosi
- Department of Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy.,Department of Surgical Sciences and Integral Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Pietro Fiaschi
- Department of Neurosurgery, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
7
|
Pattankar S, Misra BK. Protocol-Based Early Decompressive Craniectomy in a Resource-Constrained Environment: A Tertiary Care Hospital Experience. Asian J Neurosurg 2020; 15:634-639. [PMID: 33145218 PMCID: PMC7591208 DOI: 10.4103/ajns.ajns_41_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/05/2020] [Accepted: 05/05/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Decompressive craniectomy (DC) is an emergency life-saving procedure used to treat refractory intracranial hypertension (RICH). The authors aim to analyze their experience with protocol-based early DC (<24 h) in RICH cases diagnosed based on clinical and radiological evidence, without preoperative intracranial pressure monitoring done over 10 years. MATERIALS AND METHODS This is a retrospective, observational study which includes 58 consecutive patients who underwent protocol-based early DC by the senior author at a single institution between 2007 and 2017. Background variables and outcome in the form of Glasgow Outcome Score-Extended (GOS-E) at 6 months and 1 year were analyzed. RESULTS Fourteen patients had traumatic brain injury (TBI), 17 had intracranial hemorrhage (ICH), 14 had malignant cerebral infarcts (MCI), and the reminder 13 patients had other causes. At 6 months, the mortality rate was 22.4%. Good recovery, moderate disability, and severe disability were seen in 13.8%, 17.2%, and 43.1% of patients, respectively. Two patients were in vegetative state. The cutoff for favorable/unfavorable outcome was defined as GOS-E 4-8/1-3. By this application, 63.8% of patients had favorable outcome at 6 months. The favorable outcome in patients of TBI, ICH, and MCI was 57.1%, 58.8%, and 85.7%, respectively. CONCLUSIONS DC helps in obtaining a favorable outcome in selected patients with a defined pathology. The diagnosis of RICH based on clinical and radiological parameters, and protocol-based early DC, is reasonably justified as the way forward for resource-constrained environments. The risk of vegetative state is small.
Collapse
Affiliation(s)
- Sanjeev Pattankar
- Department of Neurosurgery, P. D. Hinduja National Hospital and MRC, Mumbai, Maharashtra, India
| | - Basant Kumar Misra
- Department of Neurosurgery, P. D. Hinduja National Hospital and MRC, Mumbai, Maharashtra, India
| |
Collapse
|
8
|
The Effect of Timing of Intracranial Pressure Monitor Placement in Patients with Severe Traumatic Brain Injury. Neurocrit Care 2020; 34:167-174. [PMID: 32504255 DOI: 10.1007/s12028-020-01002-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND/OBJECTIVE Intracranial pressure (ICP) monitor placement is indicated for patients with severe traumatic brain injury (sTBI) to minimize secondary brain injury. There is little evidence to guide the optimal timing of ICP monitor placement. METHODS A retrospective cohort study using the National Trauma Data Bank (NTDB) from 2013 to 2017 was performed. The NTDB was queried to identify patients with sTBI who underwent external ventricular drain or intraparenchymal ICP monitor placement. Propensity score matching was used to create matched pairs of patients who underwent early compared to late ICP monitor placement using 6-h and 12-h cutoffs. The outcomes of interest were in-hospital mortality, non-routine discharge disposition, total length of stay (LOS), intensive care unit (ICU) LOS, and number of days mechanically ventilated. RESULTS A total of 5057 patients with sTBI were included in the study. In-hospital mortality for patients with early compared to late ICP monitor placement was 33.6% and 30.4%, respectively (p = 0.049). The incidence of non-routine disposition was 92.6% in the within 6 h group and 94.4% in the late placement group (p = 0.037). Hospital LOS, ICU LOS, and number of days mechanically ventilated were significantly greater in the late ICP monitoring group. Similar results were seen when using a 12-h cutoff for late ICP monitor placement. In the Cox proportional hazards model, craniotomy (HR 1.097, 95% CI 1.037-1.160) and isolated intracranial injury (HR 1.128, 95% CI 1.055-1.207) were associated with early ICP monitor placement. Hypotension was negatively associated with early ICP monitor placement (HR 0.801, 95% CI 0.725-0.884). CONCLUSION Despite a statistically marginal association between mortality and early ICP monitor placement, most outcomes were superior when ICP monitors were placed within 6 or 12 h of arrival. This may be due to earlier identification and treatment of intracranial hypertension.
Collapse
|
9
|
Tang Z, Yang K, Zhong M, Yang R, Zhang J, Jiang Q, Liu H. Predictors of 30-Day Mortality in Traumatic Brain-Injured Patients after Primary Decompressive Craniectomy. World Neurosurg 2020; 134:e298-e305. [DOI: 10.1016/j.wneu.2019.10.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 11/28/2022]
|
10
|
Kim JH, Ahn JH, Oh JK, Song JH, Park SW, Chang IB. Factors associated with the development and outcome of hydrocephalus after decompressive craniectomy for traumatic brain injury. Neurosurg Rev 2020; 44:471-478. [PMID: 31953782 DOI: 10.1007/s10143-019-01179-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 07/29/2019] [Accepted: 09/04/2019] [Indexed: 11/28/2022]
Abstract
Posttraumatic hydrocephalus (PTH) is common in patients undergoing decompressive craniectomy (DC) for traumatic brain injury (TBI), but the incidence, mechanisms, and risk factors have not been fully elucidated. This study aimed to determine the incidence of and the factors associated with PTH. We retrospectively reviewed patients who underwent DC for TBI at our institute between January 2014 and December 2018. We identified and compared the demographic, clinical, and radiological data, and 12-month functional outcome (as assessed by the Glasgow Outcome Scale [GOS]) between patients who developed PTH and those who did not. Logistic regression analyses were performed to identify risk factors for PTH. Additionally, the influence of PTH on unfavorable functional outcome was analyzed. PTH developed in 18 (18.95%) of the 95 patients who survived at 1 month after DC. A multivariate analysis indicated that postoperative intraventricular hemorrhage (odds ratio [OR] 4.493, P = 0.020), postoperative subdural hygroma (OR 4.074, P = 0.021), and postoperative hypothermia treatment (OR 9.705, P = 0.010) were significantly associated with PTH. The 12-month functional outcome significantly differed between the patients who developed PTH and those who did not (P = 0.049). Patients who developed PTH had significantly poorer 12-month functional outcomes than those who did not (P = 0.049). Another multivariate analysis indicated that subdural hemorrhage (OR 6.814, P = 0.031) and the presence of at least one dilated pupil before DC (OR 8.202, P = 0.000) were significantly associated with unfavorable functional outcomes (GOS grades 1-3). Although the influence of PTH (OR 5.122, P = 0.056) was not statistically significant in the multivariate analysis, it had a great impact on unfavorable functional outcomes. PTH considerably affects functional outcomes at 12 months after DC for TBI. Furthermore, postoperative imaging findings such as intraventricular hemorrhage and subdural hygroma can predict the development of PTH; therefore, careful observation is required during the follow-up period.
Collapse
Affiliation(s)
- Ji Hee Kim
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, 22 Gwanpyeong-ro, Dongan-gu, Anyang-si, 14068, Gyeonggi-do, Republic of Korea
| | - Jun Hyong Ahn
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, 22 Gwanpyeong-ro, Dongan-gu, Anyang-si, 14068, Gyeonggi-do, Republic of Korea
| | - Jae Keun Oh
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, 22 Gwanpyeong-ro, Dongan-gu, Anyang-si, 14068, Gyeonggi-do, Republic of Korea
| | - Joon Ho Song
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, 22 Gwanpyeong-ro, Dongan-gu, Anyang-si, 14068, Gyeonggi-do, Republic of Korea
| | - Seung Woo Park
- Department of Neurosurgery, Kangwon National University College of Medicine, Chuncheon, Republic of Korea
| | - In Bok Chang
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, 22 Gwanpyeong-ro, Dongan-gu, Anyang-si, 14068, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
11
|
Pérez‐Alfayate R, Sallabanda‐Diaz K. Primary bilateral fronto-temporoparietal decompressive craniectomy-An alternative treatment for severe traumatic brain injury: Case report and technical note. Clin Case Rep 2019; 7:1031-1039. [PMID: 31110740 PMCID: PMC6509892 DOI: 10.1002/ccr3.2143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/05/2019] [Accepted: 03/23/2019] [Indexed: 11/12/2022] Open
Abstract
Bilateral fronto-temporoparietal decompressive craniectomy provides bigger area of the decompression that decreases the brain tissue herniation; therefore, it leads to a decrease in the neuronal stretching effect that is probably related to functional outcomes.
Collapse
|
12
|
Park YS, Kogeichi Y, Shida Y, Nakase H. Efficacy of the All-in-One Therapeutic Strategy for Severe Traumatic Brain Injury: Preliminary Outcome and Limitation. Korean J Neurotrauma 2018; 14:6-13. [PMID: 29774192 PMCID: PMC5949525 DOI: 10.13004/kjnt.2018.14.1.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/04/2022] Open
Abstract
Objective Despite recent advances in medicine, no significant improvement has been achieved in therapeutic outcomes for severe traumatic brain injury (TBI). In the treatment of severe multiple traumas, accurate judgment and prompt action corresponding to rapid pathophysiological changes are required. Therefore, we developed the “All-in-One” therapeutic strategy for severe TBI. In this report, we present the therapeutic concept and discuss its efficacy and limitations. Methods From April 2007 to December 2015, 439 patients diagnosed as having traumatic intracranial injuries were treated at our institution. Among them, 158 patients were treated surgically. The “All-in-One” therapeutic strategy was adopted to enforce all selectable treatments for these patients at the initial stages. The outline of this strategy is as follows: first, prompt trepanation surgery in the emergency room (ER); second, extensive decompression craniotomy (DC) in the operating room (OR); and finally, combined mild hypothermia and moderate barbiturate (H-B) therapy for 3 to 5 days. We performed these approaches on a regular basis rather than stepwise rule. If necessary, internal ecompression surgery and external ventricular drainage were performed in cases in which intracranial pressure could not be controlled. Results Trepanation surgery in the ER was performed in 97 cases; among these cases, 46 had hematoma removal surgery and also underwent DC in the OR. Craniotomy was not enforced unless the consciousness level and pupil findings did not improve after previous treatments. H-B therapy was administered in 56 cases. Internal decompression surgery, including evacuation of traumatic intracerebral hematoma, was additionally performed in 12 cases. Three months after injury, the Glasgow Outcome Scale (GOS) score yielded the following results: good recovery in 25 cases (16%), mild disability in 28 (18%), severe disability in 33 (21%), persistent vegetative state in 9 (6%), and death in 63 (40%). Furthermore, 27 (36%) of the 76 most severe patients who had an abnormal response of bilateral eye pupils were life-saving. Because many cases of a GOS score of ≤5 are included in this study, this result must be satisfactory. Conclusion This therapeutic strategy without any lose in the appropriate treatment timing can improve the outcomes of the most severe TBI cases. We think that the breakthrough in the treatment of severe TBI will depend on the shift in the treatment policy.
Collapse
Affiliation(s)
- Young-Soo Park
- Department of Neurosurgery, Nara Medical University, Nara, Japan
| | - Yohei Kogeichi
- Department of Neurosurgery, Nara Medical University, Nara, Japan
| | - Yoichi Shida
- Department of Neurosurgery, Nara Medical University, Nara, Japan
| | - Hiroyuki Nakase
- Department of Neurosurgery, Nara Medical University, Nara, Japan
| |
Collapse
|
13
|
Wang S, Yang H, Yang J, Kang J, Wang Q, Song Y. [Experiment of porous calcium phosphate/bone matrix gelatin composite cement for repairing lumbar vertebral bone defect in rabbit]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:1462-1467. [PMID: 29806388 PMCID: PMC8498280 DOI: 10.7507/1002-1892.201707097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 10/22/2017] [Indexed: 02/05/2023]
Abstract
Objective To investigate the effect of a porous calcium phosphate/bone matrix gelatin (BMG) composite cement (hereinafter referred to as the "porous composite cement") for repairing lumbar vertebral bone defect in a rabbit model. Methods BMG was extracted from adult New Zealand rabbits according to the Urist's method. Poly (lactic-co-glycolic) acid (PLGA) microsphere was prepared by W/O/W double emulsion method. The porous composite cement was developed by using calcium phosphate cement (CPC) composited with BMG and PLGA microsphere. The physicochemical characterizations of the porous composite cement were assessed by anti-washout property, porosity, and biomechanical experiment, also compared with the CPC. Thirty 2-month-old New Zealand rabbits were used to construct vertebral bone defect at L 3 in size of 4 mm×3 mm×3 mm. Then, the bone defect was repaired with porous composite cement (experimental group, n=15) or CPC (control group, n=15). At 4, 8, and 12 weeks after implantation, each bone specimen was assessed by X-ray films for bone fusion, micro-CT for bone mineral density (BMD), bone volume fraction (BVF), trabecular thickness (Tb. Th.), trabecular number (Tb.N.), and trabecular spacing (Tb. Sp.), and histological section with toluidine blue staining for new-born bone formation. Results The study demonstrated well anti-washout property in 2 groups. The porous composite cement has 55.06%±1.18% of porosity and (51.63±6.73) MPa of compressive strength. The CPC has 49.38%±1.75% of porosity and (63.34±3.27) MPa of compressive strength. There were significant differences in porosity and compressive strength between different cements ( t=4.254, P=0.006; t=2.476, P=0.034). X-ray films revealed that the zone between the cement and host bone gradually blurred with the time extending. At 12 weeks after implantation, the zone was disappeared in the experimental group, but clear in the control group. There were significant differences in BMD, BVF, Tb. Th., Tb. N., and Tb. Sp. between 2 groups at each time point ( P<0.05). Histological observation revealed that there was new-born bone in the cement with the time extending in 2 groups. Among them, bony connection was observed between the new-born bone and the host in the experimental group, which was prior to the control group. Conclusion The porous composite cement has dual bioactivity of osteoinductivity and osteoconductivity, which are effective to promote bone defect healing and reconstruction.
Collapse
Affiliation(s)
- Song Wang
- Department of Spine Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou Sichuan, 646000, P.R.China
| | - Han Yang
- Department of Spine Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou Sichuan, 646000, P.R.China
| | - Jian Yang
- Department of Spine Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou Sichuan, 646000, P.R.China
| | - Jianping Kang
- Department of Spine Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou Sichuan, 646000, P.R.China
| | - Qing Wang
- Department of Spine Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou Sichuan, 646000, P.R.China
| | - Yueming Song
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041,
| |
Collapse
|
14
|
Grindlinger GA, Skavdahl DH, Ecker RD, Sanborn MR. Decompressive craniectomy for severe traumatic brain injury: clinical study, literature review and meta-analysis. SPRINGERPLUS 2016; 5:1605. [PMID: 27652178 PMCID: PMC5028365 DOI: 10.1186/s40064-016-3251-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/08/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To examine the clinical and neurological outcome of patients who sustained a severe non-penetrating traumatic brain injury (TBI) and underwent unilateral decompressive craniectomy (DC) for refractory intracranial hypertension. DESIGN Single center, retrospective, observational. SETTING Level I Trauma Center in Portland, Maine. PATIENTS 31 patients aged 16-72 of either sex who sustained a severe, non-penetrating TBI and underwent a unilateral DC for evacuation of parenchymal or extra-axial hematoma or for failure of medical therapy to control intracranial pressure (ICP). INTERVENTIONS Review of the electronic medical record of patients undergoing DC for severe TBI and assessment of extended Glasgow Outcome Score (e-GOS) at 6-months following DC. MEASUREMENTS AND MAIN RESULTS The mean age was 39.3y ± 14.5. The initial GCS was 5.8 ± 3.2, and the ISS was 29.7 ± 6.3. Twenty-two patients underwent DC within the first 24 h, two within the next 24 h and seven between the 3rd and 7th day post injury. The pre-DC ICP was 30.7 ± 10.3 and the ICP was 12.1 ± 6.2 post-DC. Cranioplasty was performed in all surviving patients 1-4 months post-DC. Of the 29 survivors following DC, the e-GOS was 8 in seven patients, and 7 in ten patients. The e-GOS was 5-6 in 6 others. Of the 6 survivors with poor outcomes (e-GOS = 2-4), five were the initial patients in the series. CONCLUSIONS In patients with intractable cerebral hypertension following TBI, unilateral DC in concert with practice guideline directed brain resuscitation is associated with good functional outcome and acceptable-mortality.
Collapse
Affiliation(s)
- Gene A. Grindlinger
- Maine Medical Center, 887 Congress Street, Suite 210, Portland, ME 04102 USA
- Tufts University School of Medicine, Boston, MA USA
| | - David H. Skavdahl
- Surgical Residency Program, Maine Medical Center, Portland, ME USA
- Tufts University School of Medicine, Boston, MA USA
| | - Robert D. Ecker
- Tufts University School of Medicine, Boston, MA USA
- Department of Neurosurgery, Maine Medical Center, Portland, ME USA
| | - Matthew R. Sanborn
- Tufts University School of Medicine, Boston, MA USA
- Department of Neurosurgery, Maine Medical Center, Portland, ME USA
| |
Collapse
|