1
|
Gobert F, Corneyllie A, Bastuji H, Berthomier C, Thevenet M, Abernot J, Raverot V, Dailler F, Guérin C, Gronfier C, Luauté J, Perrin F. Twenty-four-hour rhythmicities in disorders of consciousness are associated with a favourable outcome. Commun Biol 2023; 6:1213. [PMID: 38030756 PMCID: PMC10687012 DOI: 10.1038/s42003-023-05588-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/15/2023] [Indexed: 12/01/2023] Open
Abstract
Fluctuations of consciousness and their rhythmicities have been rarely studied in patients with a disorder of consciousness after acute brain injuries. 24-h assessment of brain (EEG), behaviour (eye-opening), and circadian (clock-controlled hormones secretion from urine) functions was performed in acute brain-injured patients. The distribution, long-term predictability, and rhythmicity (circadian/ultradian) of various EEG features were compared with the initial clinical status, the functional outcome, and the circadian rhythmicities of behaviour and clock-controlled hormones. Here we show that more physiological and favourable patterns of fluctuations are associated with a higher 24 h predictability and sharp up-and-down shape of EEG switches, reminiscent of the Flip-Flop model of sleep. Multimodal rhythmic analysis shows that patients with simultaneous circadian rhythmicity for brain, behaviour, and hormones had a favourable outcome. Finally, both re-emerging EEG fluctuations and homogeneous 24-h cycles for EEG, eye-opening, and hormones appeared as surrogates for preserved functionality in brainstem and basal forebrain, which are key prognostic factors for later improvement. While the recovery of consciousness has previously been related to a high short-term complexity, we suggest in this exploratory study the importance of the high predictability of the 24 h long-term generation of brain rhythms and highlight the importance of circadian body-brain rhythms in awakening.
Collapse
Affiliation(s)
- Florent Gobert
- Neuro-Intensive care unit, Hospices Civils de Lyon, Neurological hospital Pierre-Wertheimer, 59 Boulevard Pinel, Bron, France.
- Trajectoires Team, Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), Bâtiment Inserm 16 avenue Doyen Lépine, Bron, France.
- CAP Team (Cognition Auditive et Psychoacoustique), Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), 95 boulevard Pinel, Bron, France.
| | - Alexandra Corneyllie
- CAP Team (Cognition Auditive et Psychoacoustique), Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), 95 boulevard Pinel, Bron, France
| | - Hélène Bastuji
- Sleep medicine centre, Hospices Civils de Lyon, Bron, F-69677, France
- Neuropain Team, Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), 59 Boulevard Pinel, Bron, France
| | | | - Marc Thevenet
- CAP Team (Cognition Auditive et Psychoacoustique), Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), 95 boulevard Pinel, Bron, France
| | - Jonas Abernot
- CAP Team (Cognition Auditive et Psychoacoustique), Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), 95 boulevard Pinel, Bron, France
| | - Véronique Raverot
- Hormone Laboratory, Hospices Civils de Lyon, Neurological hospital Pierre-Wertheimer, 59 Boulevard Pinel, Bron, France
| | - Frédéric Dailler
- Neuro-Intensive care unit, Hospices Civils de Lyon, Neurological hospital Pierre-Wertheimer, 59 Boulevard Pinel, Bron, France
| | - Claude Guérin
- Intensive care unit, Hospices Civils de Lyon, Croix-Rousse hospital, 103 Grande-Rue de la Croix-Rousse, Lyon, France
- Intensive care unit, Hospices Civils de Lyon, Édouard Herriot hospital, 5 Place d'Arsonval, 69003, Lyon, France
| | - Claude Gronfier
- Waking team (Integrative Physiology of the Brain Arousal Systems), Lyon Neuroscience Research Centre, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Jacques Luauté
- Trajectoires Team, Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), Bâtiment Inserm 16 avenue Doyen Lépine, Bron, France
- Neuro-rehabilitation unit, Hospices Civils de Lyon, Neurological hospital Pierre-Wertheimer, 59 Boulevard Pinel, Bron, France
| | - Fabien Perrin
- CAP Team (Cognition Auditive et Psychoacoustique), Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), 95 boulevard Pinel, Bron, France
| |
Collapse
|
2
|
Wang J, Gao X, Xiang Z, Sun F, Yang Y. Evaluation of consciousness rehabilitation via neuroimaging methods. Front Hum Neurosci 2023; 17:1233499. [PMID: 37780959 PMCID: PMC10537959 DOI: 10.3389/fnhum.2023.1233499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Accurate evaluation of patients with disorders of consciousness (DoC) is crucial for personalized treatment. However, misdiagnosis remains a serious issue. Neuroimaging methods could observe the conscious activity in patients who have no evidence of consciousness in behavior, and provide objective and quantitative indexes to assist doctors in their diagnosis. In the review, we discussed the current research based on the evaluation of consciousness rehabilitation after DoC using EEG, fMRI, PET, and fNIRS, as well as the advantages and limitations of each method. Nowadays single-modal neuroimaging can no longer meet the researchers` demand. Considering both spatial and temporal resolution, recent studies have attempted to focus on the multi-modal method which can enhance the capability of neuroimaging methods in the evaluation of DoC. As neuroimaging devices become wireless, integrated, and portable, multi-modal neuroimaging methods will drive new advancements in brain science research.
Collapse
Affiliation(s)
| | | | | | - Fangfang Sun
- College of Automation, Hangzhou Dianzi University, Hangzhou, China
| | | |
Collapse
|
3
|
Raciti L, Raciti G, Militi D, Tonin P, Quartarone A, Calabrò RS. Sleep in Disorders of Consciousness: A Brief Overview on a Still under Investigated Issue. Brain Sci 2023; 13:275. [PMID: 36831818 PMCID: PMC9954700 DOI: 10.3390/brainsci13020275] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/09/2023] Open
Abstract
Consciousness is a multifaceted concept, involving both wakefulness, i.e., a condition of being alert that is regulated by the brainstem, and awareness, a subjective experience of any thoughts or perception or emotion. Recently, the European Academy of Neurology has published international guidelines for a better diagnosis of coma and other disorders of consciousness (DOC) through the investigation of sleep patterns, such as slow-wave and REM, and the study of the EEG using machine learning methods and artificial intelligence. The management of sleep disorders in DOC patients is an increasingly hot topic and deserves careful diagnosis, to allow for the most accurate prognosis and the best medical treatment possible. The aim of this review was to investigate the anatomo-physiological basis of the sleep/wake cycle, as well as the main sleep patterns and sleep disorders in patients with DOC. We found that the sleep characteristics in DOC patients are still controversial. DOC patients often present a theta/delta pattern, while epileptiform activity, as well as other sleep elements, have been reported as correlating with outcomes in patients with coma and DOC. The absence of spindles, as well as REM and K-complexes of NREM sleep, have been used as poor predictors for early awakening in DOC patients, especially in UWS patients. Therefore, sleep could be considered a marker of DOC recovery, and effective treatments for sleep disorders may either indirectly or directly favor recovery of consciousness.
Collapse
Affiliation(s)
| | | | - David Militi
- IRCCS Centro Neurolesi Bonino Pulejo, 98121 Messina, Italy
| | | | | | | |
Collapse
|
4
|
Yelden K, James LM, Duport S, Kempny A, Farmer SF, Leff AP, Playford ED. A simple intervention for disorders of consciousness- is there a light at the end of the tunnel? Front Neurol 2022; 13:824880. [PMID: 35937075 PMCID: PMC9355643 DOI: 10.3389/fneur.2022.824880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
Sleep is a physiological state necessary for memory processing, learning and brain plasticity. Patients with disorders of consciousness (DOC) show none or minimal sign of awareness of themselves or their environment but appear to have sleep-wake cycles. The aim of our study was to assess baseline circadian rhythms and sleep in patients with DOC; to optimize circadian rhythm using an intervention combining blue light, melatonin and caffeine, and to identify the impact of this intervention on brain function using event related potentials. We evaluated baseline circadian rhythms and sleep in 17 patients with DOC with 24-h polysomnography (PSG) and 4-hourly saliva melatonin measurements for 48 h. Ten of the 17 patients (5 female, age 30-71) were then treated for 5 weeks with melatonin each night and blue light and caffeine treatment in the mornings. Behavioral assessment of arousal and awareness [Coma recovery scale-revised (CRS-R)], 24-h polysomnography and 4-hourly saliva melatonin measurements, oddball mismatch negativity (MMN) and subject's own name (SON) experiments were performed twice at baseline and following intervention. Baseline sleep was abnormal in all patients. Cosinor analysis of saliva melatonin results revealed that averaged baseline % rhythmicity was low (M: 31%, Range: 13-66.4%, SD: 18.4). However, increase in % Melatonin Rhythm following intervention was statistically significant (p = 0.012). 7 patients showed improvement of CRS-R scores with intervention and this was statistically significant (p = 0.034). All the patients who had improvement of clinical scores also had statistically significant improvement of neurophysiological responses on MMN and SON experiments at group level (p = 0.001). Our study shows that sleep and circadian rhythms are severely deranged in DOC but optimization is possible with melatonin, caffeine and blue light treatment. Clinical and physiological parameters improved with this simple and inexpensive intervention. Optimization of sleep and circadian rhythms should be integrated into rehabilitation programs for people with DOC.
Collapse
Affiliation(s)
- Kudret Yelden
- Neurological Rehabilitation, Royal Hospital for Neuro-Disability, London, United Kingdom
- Department of Neuroscience, King's College Hospital, London, United Kingdom
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Leon M. James
- Neurophysiology Department, Bupa Cromwell Hospital, London, United Kingdom
| | - Sophie Duport
- Research Department, Royal Hospital for Neuro-Disability, London, United Kingdom
| | - Agnieszka Kempny
- Research Department, Royal Hospital for Neuro-Disability, London, United Kingdom
| | - Simon F. Farmer
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- National Hospital for Neurology and Neurosurgery, University College London Hospital, London, United Kingdom
| | - Alex P. Leff
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- National Hospital for Neurology and Neurosurgery, University College London Hospital, London, United Kingdom
| | - E. Diane Playford
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
5
|
van der Lande GJM, Blume C, Annen J. Sleep and circadian disturbance in disorders of consciousness: current methods and the way towards clinical implementation. Semin Neurol 2022; 42:283-298. [PMID: 35793707 DOI: 10.1055/a-1893-2785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | - Christine Blume
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Jitka Annen
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium.,Centre du Cerveau2, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
6
|
Hermann B, Sangaré A, Munoz-Musat E, Salah AB, Perez P, Valente M, Faugeras F, Axelrod V, Demeret S, Marois C, Pyatigorskaya N, Habert MO, Kas A, Sitt JD, Rohaut B, Naccache L. Importance, limits and caveats of the use of “disorders of consciousness” to theorize consciousness. Neurosci Conscious 2022; 2021:niab048. [PMID: 35369675 PMCID: PMC8966966 DOI: 10.1093/nc/niab048] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/21/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical and fundamental exploration of patients suffering from disorders of consciousness (DoC) is commonly used by researchers both to test some of their key theoretical predictions and to serve as a unique source of empirical knowledge about possible dissociations between consciousness and cognitive and/or neural processes. For instance, the existence of states of vigilance free of any self-reportable subjective experience [e.g. “vegetative state (VS)” and “complex partial epileptic seizure”] originated from DoC and acted as a cornerstone for all theories by dissociating two concepts that were commonly equated and confused: vigilance and conscious state. In the present article, we first expose briefly the major achievements in the exploration and understanding of DoC. We then propose a synthetic taxonomy of DoC, and we finally highlight some current limits, caveats and questions that have to be addressed when using DoC to theorize consciousness. In particular, we show (i) that a purely behavioral approach of DoC is insufficient to characterize the conscious state of patients; (ii) that the comparison between patients in a minimally conscious state (MCS) and patients in a VS [also coined as unresponsive wakefulness syndrome (UWS)] does not correspond to a pure and minimal contrast between unconscious and conscious states and (iii) we emphasize, in the light of original resting-state positron emission tomography data, that behavioral MCS captures an important but misnamed clinical condition that rather corresponds to a cortically mediated state and that MCS does not necessarily imply the preservation of a conscious state.
Collapse
Affiliation(s)
| | - Aude Sangaré
- Brain institute-ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris 75013, France
- Department of Neurophysiology, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris 75006, France
| | - Esteban Munoz-Musat
- Brain institute-ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris 75013, France
| | - Amina Ben Salah
- Brain institute-ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris 75013, France
| | - Pauline Perez
- Brain institute-ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris 75013, France
| | - Mélanie Valente
- Brain institute-ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris 75013, France
- Department of Neurophysiology, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris 75006, France
| | - Frédéric Faugeras
- Department of Neurology, AP-HP, Hôpital Henri-Mondor-Albert Chenevier, Université Paris Est Creteil, Créteil 94 000, France
- Département d’Etudes Cognitives, École normale supérieure, PSL University, Paris 75005, France
- Inserm U955, Institut Mondor de Recherche Biomédicale, Equipe E01 NeuroPsychologie Interventionnelle, Créteil 94000, France
| | - Vadim Axelrod
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Sophie Demeret
- Department of Neurology, Neuro-ICU, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris 75006, France
| | - Clémence Marois
- Department of Neurology, Neuro-ICU, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris 75006, France
| | - Nadya Pyatigorskaya
- Brain institute-ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris 75013, France
- Department of Neuroradiology, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris 75006, France
| | - Marie-Odile Habert
- Department of Nuclear Medicine, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Laboratoire d’Imagerie Biomédicale, LIB, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Aurélie Kas
- Department of Nuclear Medicine, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Laboratoire d’Imagerie Biomédicale, LIB, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Jacobo D Sitt
- Brain institute-ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris 75013, France
| | - Benjamin Rohaut
- Brain institute-ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris 75013, France
- Department of Neurology, Neuro-ICU, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris 75006, France
| | - Lionel Naccache
- Brain institute-ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris 75013, France
- Department of Neurophysiology, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris 75006, France
- Medical Intensive Care Unit, AP-HP, Hôpital Européen Georges Pompidou, Paris 75015, France
| |
Collapse
|
7
|
A Systematic Review of Sleep in Patients with Disorders of Consciousness: From Diagnosis to Prognosis. Brain Sci 2021; 11:brainsci11081072. [PMID: 34439690 PMCID: PMC8393958 DOI: 10.3390/brainsci11081072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 10/26/2022] Open
Abstract
With the development of intensive care technology, the number of patients who survive acute severe brain injury has increased significantly. At present, it is difficult to diagnose the patients with disorders of consciousness (DOCs) because motor responses in these patients may be very limited and inconsistent. Electrophysiological criteria, such as event-related potentials or motor imagery, have also been studied to establish a diagnosis and prognosis based on command-following or active paradigms. However, the use of such task-based techniques in DOC patients is methodologically complex and requires careful analysis and interpretation. The present paper focuses on the analysis of sleep patterns for the evaluation of DOC and its relationships with diagnosis and prognosis outcomes. We discuss the concepts of sleep patterns in patients suffering from DOC, identification of this challenging population, and the prognostic value of sleep. The available literature on individuals in an unresponsive wakefulness syndrome (UWS) or minimally conscious state (MCS) following traumatic or nontraumatic severe brain injury is reviewed. We can distinguish patients with different levels of consciousness by studying sleep patients with DOC. Most MCS patients have sleep and wake alternations, sleep spindles and rapid eye movement (REM) sleep, while UWS patients have few EEG changes. A large number of sleep spindles and organized sleep-wake patterns predict better clinical outcomes. It is expected that this review will promote our understanding of sleep EEG in DOC.
Collapse
|
8
|
Pain Perception in Disorder of Consciousness: A Scoping Review on Current Knowledge, Clinical Applications, and Future Perspective. Brain Sci 2021; 11:brainsci11050665. [PMID: 34065349 PMCID: PMC8161058 DOI: 10.3390/brainsci11050665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/05/2021] [Accepted: 05/19/2021] [Indexed: 01/18/2023] Open
Abstract
Pain perception in individuals with prolonged disorders of consciousness (PDOC) is still a matter of debate. Advanced neuroimaging studies suggest some cortical activations even in patients with unresponsive wakefulness syndrome (UWS) compared to those with a minimally conscious state (MCS). Therefore, pain perception has to be considered even in individuals with UWS. However, advanced neuroimaging assessment can be challenging to conduct, and its findings are sometimes difficult to be interpreted. Conversely, multichannel electroencephalography (EEG) and laser-evoked potentials (LEPs) can be carried out quickly and are more adaptable to the clinical needs. In this scoping review, we dealt with the neurophysiological basis underpinning pain in PDOC, pointing out how pain perception assessment in these individuals might help in reducing the misdiagnosis rate. The available literature data suggest that patients with UWS show a more severe functional connectivity breakdown among the pain-related brain areas compared to individuals in MCS, pointing out that pain perception increases with the level of consciousness. However, there are noteworthy exceptions, because some UWS patients show pain-related cortical activations that partially overlap those observed in MCS individuals. This suggests that some patients with UWS may have residual brain functional connectivity supporting the somatosensory, affective, and cognitive aspects of pain processing (i.e., a conscious experience of the unpleasantness of pain), rather than only being able to show autonomic responses to potentially harmful stimuli. Therefore, the significance of the neurophysiological approach to pain perception in PDOC seems to be clear, and despite some methodological caveats (including intensity of stimulation, multimodal paradigms, and active vs. passive stimulation protocols), remain to be solved. To summarize, an accurate clinical and neurophysiological assessment should always be performed for a better understanding of pain perception neurophysiological underpinnings, a more precise differential diagnosis at the level of individual cases as well as group comparisons, and patient-tailored management.
Collapse
|
9
|
Nekrasova J, Kanarskii M, Yankevich D, Shpichko A, Borisov I, Pradhan P, Miroshnichenko M. Retrospective analysis of sleep patterns in patients with chronic disorders of consciousness. Sleep Med X 2020; 2:100024. [PMID: 33870176 PMCID: PMC8041117 DOI: 10.1016/j.sleepx.2020.100024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 12/04/2022] Open
Abstract
Analysis of sleep patterns in patients with chronic disorders of consciousness attracts attention from the perspective of the diagnosis and prognosis of the disease as well as the treatment. Yet, the very existence of normal sleep in patients in a vegetative or minimally conscious state is still a matter of debate. This paper presents a retrospective analysis of overnight polysomnographic records of 40 patients with chronic disorders of consciousness aimed at the possibility of establishing the connection between the degree of impaired consciousness and the presence and organization of polysomnographic graphical elements, associated with stages of sleep in normal individuals. Specialized software based on expert system artificial intelligence was developed to calculate indices and parameters that characterize sleep. It was shown that a remarkably low percentage of patients have a rhythmic change in sleep patterns, what indicates the prevalence of violations of the Sleep-Wake cycle in a vegetative state and minimally conscious state. Sleep spindles were not found in records, however, the absence can originate from the limitations of polysomnographic method applied to patients with severe brain damage. A positive correlation between the rhythmic change of sleep patterns, better outcome and CRS-R scores was confirmed.
Collapse
Affiliation(s)
- Julia Nekrasova
- Federal State Budget Scientific Institution, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
- Federal State Budgetary Educational Institution of Higher Education, Moscow Aviation Institute (National Research University), Moscow, Russia
| | - Mikhail Kanarskii
- Federal State Budget Scientific Institution, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Dmitrii Yankevich
- Federal State Budget Scientific Institution, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Andrey Shpichko
- Federal State Budget Scientific Institution, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Ilya Borisov
- Federal State Budget Scientific Institution, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Pranil Pradhan
- Federal State Budget Scientific Institution, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Maria Miroshnichenko
- Federal State Budget Scientific Institution, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| |
Collapse
|
10
|
Mertel I, Pavlov YG, Barner C, Müller F, Diekelmann S, Kotchoubey B. Sleep in disorders of consciousness: behavioral and polysomnographic recording. BMC Med 2020; 18:350. [PMID: 33213463 PMCID: PMC7678091 DOI: 10.1186/s12916-020-01812-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Sleep-wakefulness cycles are an essential diagnostic criterion for disorders of consciousness (DOC), differentiating prolonged DOC from coma. Specific sleep features, like the presence of sleep spindles, are an important marker for the prognosis of recovery from DOC. Based on increasing evidence for a link between sleep and neuronal plasticity, understanding sleep in DOC might facilitate the development of novel methods for rehabilitation. Yet, well-controlled studies of sleep in DOC are lacking. Here, we aimed to quantify, on a reliable evaluation basis, the distribution of behavioral and neurophysiological sleep patterns in DOC over a 24-h period while controlling for environmental factors (by recruiting a group of conscious tetraplegic patients who resided in the same hospital). METHODS We evaluated the distribution of sleep and wakefulness by means of polysomnography (EEG, EOG, EMG) and video recordings in 32 DOC patients (16 unresponsive wakefulness syndrome [UWS], 16 minimally conscious state [MCS]), and 10 clinical control patients with severe tetraplegia. Three independent raters scored the patients' polysomnographic recordings. RESULTS All but one patient (UWS) showed behavioral and electrophysiological signs of sleep. Control and MCS patients spent significantly more time in sleep during the night than during daytime, a pattern that was not evident in UWS. DOC patients (particularly UWS) exhibited less REM sleep than control patients. Forty-four percent of UWS patients and 12% of MCS patients did not have any REM sleep, while all control patients (100%) showed signs of all sleep stages and sleep spindles. Furthermore, no sleep spindles were found in 62% of UWS patients and 21% of MCS patients. In the remaining DOC patients who had spindles, their number and amplitude were significantly lower than in controls. CONCLUSIONS The distribution of sleep signs in DOC over 24 h differs significantly from the normal sleep-wakefulness pattern. These abnormalities of sleep in DOC are independent of external factors such as severe immobility and hospital environment.
Collapse
Affiliation(s)
- Isabella Mertel
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076, Tübingen, Germany.,Schoen Clinics for Neurological Rehabilitation, Bad Aibling, Germany
| | - Yuri G Pavlov
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076, Tübingen, Germany. .,Department of Psychology, Ural Federal University, Ekaterinburg, Russian Federation, 620000.
| | - Christine Barner
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076, Tübingen, Germany
| | - Friedemann Müller
- Schoen Clinics for Neurological Rehabilitation, Bad Aibling, Germany
| | - Susanne Diekelmann
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076, Tübingen, Germany
| | - Boris Kotchoubey
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
11
|
Maggio MG, Naro A, La Rosa G, Cambria A, Lauria P, Billeri L, Latella D, Manuli A, Calabrò RS. Virtual Reality Based Cognitive Rehabilitation in Minimally Conscious State: A Case Report with EEG Findings and Systematic Literature Review. Brain Sci 2020; 10:E414. [PMID: 32630179 PMCID: PMC7407378 DOI: 10.3390/brainsci10070414] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic disorders of consciousness cause a total or partial and fluctuating unawareness of the surrounding environment. Virtual reality (VR) can be useful as a diagnostic and/or a neurorehabilitation tool, and its effects can be monitored by means of both clinical and electroencephalography (EEG) data recording of brain activity. We reported on the case of a 17-year-old patient with a disorder of consciousness (DoC) who was provided with VR training to improve her cognitive-behavioral outcomes, which were assessed using clinical scales (the Coma Recovery Scale-Revised, the Disability Rating Scale, and the Rancho Los Amigos Levels of Cognitive Functioning), as well as EEG recording, during VR training sessions. At the end of the training, significant improvements in both clinical and neurophysiological outcomes were achieved. Then, we carried out a systematic review of the literature to investigate the role of EEG and VR in the management of patients with DoC. A search on PubMed, Web of Science, Scopus, and Google Scholar databases was performed, using the keywords: "disorders of consciousness" and "virtual reality", or "EEG". The results of the literature review suggest that neurophysiological data in combination with VR could be useful in evaluating the reactions induced by different paradigms in DoC patients, helping in the differential diagnosis. In conclusion, the EEG plus VR approach used with our patient could be promising to define the most appropriate stimulation protocol, so as to promote a better personalization of the rehabilitation program. However, further clinical trials, as well as meta-analysis of the literature, are needed to be affirmative on the role of VR in patients with DoC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Rocco Salvatore Calabrò
- Rocco Salvatore Calabrò, IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, SS 113, Ctr. Casazza, 98124 Messina, Italy; (M.G.M.); (A.N.); (G.L.R.); (A.C.); (P.L.); (L.B.); (D.L.); (A.M.)
| |
Collapse
|
12
|
The Relation Between Loss of Consciousness, Severity of Traumatic Brain Injury, and Injury of Ascending Reticular Activating System in Patients With Traumatic Brain Injury. Am J Phys Med Rehabil 2020; 98:1067-1071. [PMID: 31206359 DOI: 10.1097/phm.0000000000001243] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Loss of consciousness is an indicator of the severity of traumatic brain injury and the ascending reticular activating system has been considered as a main structure for consciousness. However, no study on the relation between loss of consciousness and ascending reticular activating system injury in traumatic brain injury has been reported. We investigated the relation between loss of consciousness, severity of traumatic brain injury, and ascending reticular activating system injury using diffusion tensor tractography. DESIGN One hundred twenty patients were recruited. Three components of ascending reticular activating system, fractional anisotropy, and tract volume were measured. RESULTS In lower dorsal and ventral ascending reticular activating system, fractional anisotropy and tract volume value in mild group were higher than those of moderate and severe groups, and there was no difference between moderate and severe groups. In upper ascending reticular activating system, fractional anisotropy value in mild group was higher than in moderate group, and it was higher than in moderate group than in severe group. Tract volume value in mild group was higher than in severe group. Loss of consciousness showed moderate negative correlations with tract volume value of lower dorsal ascending reticular activating system (r = -0.348), fractional anisotropy value of lower ventral ascending reticular activating system (r = -0.343), and fractional anisotropy value of upper ascending reticular activating system (r = -0.416). CONCLUSIONS Injury severity was different among the three traumatic brain injury groups in upper ascending reticular activating system but did not differ between moderate and severe groups in lower dorsal and ventral ascending reticular activating system.
Collapse
|
13
|
Billeri L, Filoni S, Russo EF, Portaro S, Militi D, Calabrò RS, Naro A. Toward Improving Diagnostic Strategies in Chronic Disorders of Consciousness: An Overview on the (Re-)Emergent Role of Neurophysiology. Brain Sci 2020; 10:brainsci10010042. [PMID: 31936844 PMCID: PMC7016627 DOI: 10.3390/brainsci10010042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
The differential diagnosis of patients with Disorder of Consciousness (DoC), in particular in the chronic phase, is significantly difficult. Actually, about 40% of patients with unresponsive wakefulness syndrome (UWS) and the minimally conscious state (MCS) are misdiagnosed. Indeed, only advanced paraclinical approaches, including advanced EEG analyses, can allow achieving a more reliable diagnosis, that is, discovering residual traces of awareness in patients with UWS (namely, functional Locked-In Syndrome (fLIS)). These approaches aim at capturing the residual brain network models, at rest or that may be activated in response to relevant stimuli, which may be appropriate for awareness to emerge (despite their insufficiency to generate purposeful motor behaviors). For this, different brain network models have been studied in patients with DoC by using sensory stimuli (i.e., passive tasks), probing response to commands (i.e., active tasks), and during resting-state. Since it can be difficult for patients with DoC to perform even simple active tasks, this scoping review aims at summarizing the current, innovative neurophysiological examination methods in resting state/passive modality to differentiate and prognosticate patients with DoC. We conclude that the electrophysiologically-based diagnostic procedures represent an important resource for diagnosis, prognosis, and, therefore, management of patients with DoC, using advance passive and resting state paradigm analyses for the patients who lie in the “greyzones” between MCS, UWS, and fLIS.
Collapse
Affiliation(s)
- Luana Billeri
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (L.B.); (S.P.); (A.N.)
| | - Serena Filoni
- Padre Pio Foundation and Rehabilitation Centers, San Giovanni Rotondo, 71013 Foggia, Italy;
- Correspondence: (S.F.); (R.S.C.); Tel.: +39-090-6012-8166 (R.S.C.)
| | | | - Simona Portaro
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (L.B.); (S.P.); (A.N.)
| | | | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (L.B.); (S.P.); (A.N.)
- Correspondence: (S.F.); (R.S.C.); Tel.: +39-090-6012-8166 (R.S.C.)
| | - Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (L.B.); (S.P.); (A.N.)
| |
Collapse
|
14
|
Pavlov YG, Gais S, Müller F, Schönauer M, Schäpers B, Born J, Kotchoubey B. Night sleep in patients with vegetative state. J Sleep Res 2017; 26:629-640. [PMID: 28444788 DOI: 10.1111/jsr.12524] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 02/11/2017] [Indexed: 12/22/2022]
Abstract
Polysomnographic recording of night sleep was carried out in 15 patients with the diagnosis vegetative state (syn. unresponsive wakefulness syndrome). Sleep scoring was performed by three raters, and confirmed by means of a spectral power analysis of the electroencephalogram, electrooculogram and electromyogram. All patients but one exhibited at least some signs of sleep. In particular, sleep stage N1 was found in 13 patients, N2 in 14 patients, N3 in nine patients, and rapid eye movement sleep in 10 patients. Three patients exhibited all phenomena characteristic for normal sleep, including spindles and rapid eye movements. However, in all but one patient, sleep patterns were severely disturbed as compared with normative data. All patients had frequent and long periods of wakefulness during the night. In some apparent rapid eye movement sleep episodes, no eye movements were recorded. Sleep spindles were detected in five patients only, and their density was very low. We conclude that the majority of vegetative state patients retain some important circadian changes. Further studies are necessary to disentangle multiple factors potentially affecting sleep pattern of vegetative state patients.
Collapse
Affiliation(s)
- Yuri G Pavlov
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,Department of Psychology, Ural Federal University, Yekaterinburg, Russia
| | - Steffen Gais
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Friedemann Müller
- Schoen Clinics for Neurological Rehabilitation, Bad Aibling, Germany
| | - Monika Schönauer
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Barbara Schäpers
- Schoen Clinics for Neurological Rehabilitation, Bad Aibling, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Boris Kotchoubey
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
15
|
Wislowska M, Del Giudice R, Lechinger J, Wielek T, Heib DPJ, Pitiot A, Pichler G, Michitsch G, Donis J, Schabus M. Night and day variations of sleep in patients with disorders of consciousness. Sci Rep 2017; 7:266. [PMID: 28325926 PMCID: PMC5428269 DOI: 10.1038/s41598-017-00323-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/21/2017] [Indexed: 02/01/2023] Open
Abstract
Brain injuries substantially change the entire landscape of oscillatory dynamics and render detection of typical sleep patterns difficult. Yet, sleep is characterized not only by specific EEG waveforms, but also by its circadian organization. In the present study we investigated whether brain dynamics of patients with disorders of consciousness systematically change between day and night. We recorded ~24 h EEG at the bedside of 18 patients diagnosed to be vigilant but unaware (Unresponsive Wakefulness Syndrome) and 17 patients revealing signs of fluctuating consciousness (Minimally Conscious State). The day-to-night changes in (i) spectral power, (ii) sleep-specific oscillatory patterns and (iii) signal complexity were analyzed and compared to 26 healthy control subjects. Surprisingly, the prevalence of sleep spindles and slow waves did not systematically vary between day and night in patients, whereas day-night changes in EEG power spectra and signal complexity were revealed in minimally conscious but not unaware patients.
Collapse
Affiliation(s)
- Malgorzata Wislowska
- Laboratory for Sleep, Cognition and Consciousness, & Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Renata Del Giudice
- Laboratory for Sleep, Cognition and Consciousness, & Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Julia Lechinger
- Laboratory for Sleep, Cognition and Consciousness, & Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Tomasz Wielek
- Laboratory for Sleep, Cognition and Consciousness, & Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Dominik P J Heib
- Laboratory for Sleep, Cognition and Consciousness, & Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Alain Pitiot
- Laboratory of Image & Data Analysis, Ilixa Ltd., Nottingham, United Kingdom
| | - Gerald Pichler
- Apallic Care Unit, Neurological Division, Albert-Schweitzer-Klinik, Graz, Austria
| | - Gabriele Michitsch
- Apallic Care Unit, Neurological Division, Pflegewohnhaus Donaustadt, Vienna, Austria
| | - Johann Donis
- Apallic Care Unit, Neurological Division, Pflegewohnhaus Donaustadt, Vienna, Austria
| | - Manuel Schabus
- Laboratory for Sleep, Cognition and Consciousness, & Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
16
|
Disorders of Consciousness: Painless or Painful Conditions?-Evidence from Neuroimaging Studies. Brain Sci 2016; 6:brainsci6040047. [PMID: 27740600 PMCID: PMC5187561 DOI: 10.3390/brainsci6040047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 01/18/2023] Open
Abstract
The experience of pain in disorders of consciousness is still debated. Neuroimaging studies, using functional Magnetic Resonance Imaging (fMRI), Positron Emission Tomography (PET), multichannel electroencephalography (EEG) and laser-evoked potentials, suggest that the perception of pain increases with the level of consciousness. Brain activation in response to noxious stimuli has been observed in patients with unresponsive wakefulness syndrome (UWS), which is also referred to as a vegetative state (VS), as well as those in a minimally conscious state (MCS). However, all of these techniques suggest that pain-related brain activation patterns of patients in MCS more closely resemble those of healthy subjects. This is further supported by fMRI findings showing a much greater functional connectivity within the structures of the so-called pain matrix in MCS as compared to UWS/VS patients. Nonetheless, when interpreting the results, a distinction is necessary between autonomic responses to potentially harmful stimuli and conscious experience of the unpleasantness of pain. Even more so if we consider that the degree of residual functioning and cortical connectivity necessary for the somatosensory, affective and cognitive-evaluative components of pain processing are not yet clear. Although procedurally challenging, the particular value of the aforementioned techniques in the assessment of pain in disorders of consciousness has been clearly demonstrated. The study of pain-related brain activation and functioning can contribute to a better understanding of the networks underlying pain perception while addressing clinical and ethical questions concerning patient care. Further development of technology and methods should aim to increase the availability of neuroimaging, objective assessment of functional connectivity and analysis at the level of individual cases as well as group comparisons. This will enable neuroimaging to truly become a clinical tool to reliably investigate pain in severely brain-injured patients as well as an asset for research.
Collapse
|