1
|
Jafari R, Cramer GM, Celli JP. Modulation of Extracellular Matrix Rigidity Via Riboflavin-mediated Photocrosslinking Regulates Invasive Motility and Treatment Response in a 3D Pancreatic Tumor Model. Photochem Photobiol 2020; 96:365-372. [PMID: 31820435 DOI: 10.1111/php.13191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/04/2019] [Indexed: 01/01/2023]
Abstract
In this study, we evaluate the use of riboflavin-mediated collagen photocrosslinking as an experimental tool to modulate extracellular matrix (ECM) mechanical properties in 3D in vitro tumor models. Using this approach in conjunction with 3D pancreatic tumor spheroid transplants, we show that the extent of matrix photocrosslinking in reconstituted hydrogels with fixed protein concentration scales inversely with the extent of invasive progression achieved by cells infiltrating into the surrounding ECM from primary transplanted spheroids. Using cross-linking to manipulate the extent of invasion into ECM in conjunction with imaging-based treatment assessment, we further leverage this approach as a means for assaying differential therapeutic response in primary nodule and ECM-invading populations and compare response to verteporfin-based photodynamic therapy (PDT) and oxaliplatin chemotherapy. Treatment response data shows that invading cell populations (which also exhibit markers of increased EMT) are highly chemoresistant yet have significantly increased sensitivity to PDT relative to the primary nodule. In contrast, the oxaliplatin treatment achieves greater growth inhibition of the primary nodule. These findings may be significant in themselves, while the methodology developed here could have a broader range of applications in developing strategies to target invasive disease and/or mecahanobiological determinants of therapeutic response in solid tumors.
Collapse
Affiliation(s)
- Rojin Jafari
- Department of Physics, University of Massachusetts, Boston, MA
| | - Gwendolyn M Cramer
- Department of Physics, University of Massachusetts, Boston, MA.,Molecular, Cellular and Organismal Biology (MCOB) Program, University of Massachusetts, Boston, MA
| | | |
Collapse
|
2
|
Sharif R, Hjortdal J, Sejersen H, Frank G, Karamichos D. Human in vitro Model Reveals the Effects of Collagen Cross-linking on Keratoconus Pathogenesis. Sci Rep 2017; 7:12517. [PMID: 28970517 PMCID: PMC5624875 DOI: 10.1038/s41598-017-12598-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022] Open
Abstract
Keratoconus (KC) is a corneal thinning disorder that leads to severe vision impairment As opposed to corneal transplantation; corneal collagen crosslinking (CXL) is a relatively non-invasive procedure that leads to an increase in corneal stiffness. In order to evaluate the effect of CXL on human corneal stromal cells in vitro, we developed a 3-D in vitro CXL model, using primary Human corneal fibroblasts (HCFs) from healthy patients and Human Keratoconus fibroblasts (HKCs) from KC patients. Cells were plated on transwell polycarbonate membranes and stimulated by a stable vitamin C. CXL was performed using a mixed riboflavin 0.1% PBS solution followed by UVA irradiation. Our data revealed no significant apoptosis in either HCFs or HKCs following CXL. However, corneal fibrosis markers, Collagen III and α-smooth muscle actin, were significantly downregulated in CXL HKCs. Furthermore, a significant downregulation was seen in SMAD3, SMAD7, and phosphorylated SMADs -2 and -3 expression in CXL HKCs, contrary to a significant upregulation in both SMAD2 and Lysyl oxidase expression, compared to HCFs. Our novel 3-D in vitro model can be utilized to determine the cellular and molecular effects on the human corneal stroma post CXL, and promises to establish optimized treatment modalities in patients with KC.
Collapse
Affiliation(s)
- Rabab Sharif
- Department of Cell Biology, University of Oklahoma Health science Center, Oklahoma City, Oklahoma, USA
| | - Jesper Hjortdal
- Department of Ophthalmology, Aarhus University Hospital, Aarhus C, Denmark
| | - Henrik Sejersen
- Department of Ophthalmology, Aarhus University Hospital, Aarhus C, Denmark
| | - Garett Frank
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Dimitrios Karamichos
- Department of Cell Biology, University of Oklahoma Health science Center, Oklahoma City, Oklahoma, USA.
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
3
|
Ahearne M, Coyle A. Application of UVA-riboflavin crosslinking to enhance the mechanical properties of extracellular matrix derived hydrogels. J Mech Behav Biomed Mater 2015; 54:259-67. [PMID: 26476968 DOI: 10.1016/j.jmbbm.2015.09.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/23/2015] [Accepted: 09/30/2015] [Indexed: 01/22/2023]
Abstract
Hydrogels derived from extracellular matrix (ECM) have become increasing popular in recent years, particularly for use in tissue engineering. One limitation with ECM hydrogels is that they tend to have poor mechanical properties compared to native tissues they are trying to replicate. To address this problem, a UVA (ultraviolet-A) riboflavin crosslinking technique was applied to ECM hydrogels to determine if it could be used to improve their elastic modulus. Hydrogels fabricated from corneal, cardiac and liver ECM were used in this study. The mechanical properties of the hydrogels were characterized using a spherical indentation technique. The microstructure of the hydrogels and the cytotoxic effect of crosslinking on cell seeded hydrogels were also evaluated. The combination of UVA light and riboflavin solution led to a significant increase in elastic modulus from 6.8kPa to 24.7kPa, 1.4kPa to 6.9kPa and 0.9kPa to 1.6kPa for corneal, cardiac and liver ECM hydrogels respectively. The extent of this increase was dependent on a number of factors including the UVA exposure time and the initial hydrogel concentration. There were also a high percentage of viable cells within the cell seeded hydrogels with 94% of cells remaining viable after 90min exposure to UVA light. These results suggest that UVA-riboflavin crosslinking is an effective approach for improving the mechanical properties of ECM hydrogels without resulting in a significant reduction of cell viability.
Collapse
Affiliation(s)
- Mark Ahearne
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland.
| | - Aron Coyle
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
| |
Collapse
|
4
|
Stachon T, Wang J, Song X, Langenbucher A, Seitz B, Szentmáry N. Impact of crosslinking/riboflavin-UVA-photodynamic inactivation on viability, apoptosis and activation of human keratocytes in vitro. J Biomed Res 2015; 29:321-5. [PMID: 26243519 PMCID: PMC4547381 DOI: 10.7555/jbr.29.20130173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/01/2014] [Accepted: 01/15/2015] [Indexed: 11/03/2022] Open
Abstract
Riboflavin-UVA photodynamic inactivation is a potential treatment alternative in therapy resistant infectious keratitis. The purpose of our study was to determine the impact of riboflavin-UVA photodynamic inactivation on viability, apoptosis and activation of human keratocytes in vitro. Primary human keratocytes were isolated from human corneal buttons and cultured in DMEM/Ham's F12 medium supplemented with 10% fetal calf serum. Keratocytes underwent UVA light illumination (375 nm) for 4.10 minutes (2 J/cm²) during exposure to different concentrations of riboflavin. Twenty-four hours after treatment, cell viability was evaluated photometrically, whereas apoptosis, CD34 and alpha-smooth muscle actin (α-SMA) expression were assessed using flow cytometry. We did not detect significant changes in cell viability, apoptosis, CD34 and α-SMA expression in groups only treated with riboflavin or UVA light. In the group treated with riboflavin-UVA-photodynamic inactivation, viability of keratocytes decreased significantly at 0.1% riboflavin (P<0.01) while the percentage of CD34 (P<0.01 for both 0.05% and 0.1% riboflavin) and alpha-SMA positive keratocytes (P<0.01 and P<0.05 for 0.05% and 0.1% riboflavin, respectively) increased significantly compared to the controls. There was no significant change in the percentage of apoptotic keratocytes compared to controls at any of the used riboflavin concentrations (P=0.09 and P=0.13). We concluded that riboflavin-UVA-photodynamic-inactivation decreases viability of myofibroblastic transformation and multipotent haematopoietic stem cell transformation; however, it does not have an impact on apoptosis of human keratocytes in vitro.
Collapse
Affiliation(s)
- Tanja Stachon
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar 66424, Germany.
| | - Jiong Wang
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar 66424, Germany
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei 43060, China
| | - Xufei Song
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar 66424, Germany
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Achim Langenbucher
- Experimental Ophthalmology, Saarland University, Homburg, Saar 66424, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar 66424, Germany
| | - Nóra Szentmáry
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar 66424, Germany
| |
Collapse
|
5
|
Viability, apoptosis, proliferation, activation, and cytokine secretion of human keratoconus keratocytes after cross-linking. BIOMED RESEARCH INTERNATIONAL 2015; 2015:254237. [PMID: 25699261 PMCID: PMC4324889 DOI: 10.1155/2015/254237] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/02/2014] [Indexed: 12/03/2022]
Abstract
Purpose. The purpose of this study was to determine the impact of cross-linking (CXL) on viability, apoptosis, proliferation, activation, and cytokine secretion of human keratoconus (KC) keratocytes, in vitro. Methods. Primary KC keratocytes were cultured in DMEM/Ham's F12 medium supplemented with 10% FCS and underwent UVA illumination (370 nm, 2 J/cm2) during exposure to 0.1% riboflavin and 20% Dextran in PBS. Twenty-four hours after CXL, viability was assessed using Alamar blue assay; apoptosis using APO-DIRECT Kit; proliferation using ELISA-BrdU kit; and CD34 and alpha-smooth muscle actin (α-SMA) expression using flow cytometry. Five and 24 hours after CXL, FGFb, HGF, TGFβ1, VEGF, KGF, IL-1β, IL-6, and IL-8 secretion was measured using enzyme-linked-immunoabsorbent assay (ELISA). Results. Following CXL, cell viability and proliferation decreased (P < 0.05; P = 0.009), the percentage of apoptotic keratocytes increased (P < 0.05) significantly, and CD34 and α-SMA expression remained unchanged (P > 0.06). Five hours after CXL, FGFb secretion increased significantly (P = 0.037); however no other cytokine secretion differed significantly from controls after 5 or 24 hours (P > 0.12). Conclusions. Cross-linking decreases viability, triggers apoptosis, and inhibits proliferation, without an impact on multipotent hematopoietic stem cell transformation and myofibroblastic transformation of KC keratocytes. CXL triggers FGFb secretion of KC keratocytes transiently (5 hours), normalizing after 24 hours.
Collapse
|
6
|
Chan CC, Squissato V. Keratoconus and crosslinking: pharmacokinetic considerations. Expert Opin Drug Metab Toxicol 2013; 9:1613-24. [DOI: 10.1517/17425255.2013.834886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Ionescu AM, Alaminos M, de la Cruz Cardona J, de Dios García-López Durán J, González-Andrades M, Ghinea R, Campos A, Hita E, del Mar Pérez M. Investigating a novel nanostructured fibrin-agarose biomaterial for human cornea tissue engineering: rheological properties. J Mech Behav Biomed Mater 2011; 4:1963-73. [PMID: 22098895 DOI: 10.1016/j.jmbbm.2011.06.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/15/2011] [Accepted: 06/21/2011] [Indexed: 12/01/2022]
Abstract
In this work, the rheological properties of the biomaterial fibrin with different agarose concentrations, used for the generation of a bioengineered human corneal stroma by tissue engineering, before and after using a nanostructuring technique, were analyzed. The transparency of these artificial human stromas was also investigated. The temporal evaluation of the properties of these biomaterials is essential for the design of functional biological human corneal replacements. The nanostructuring technique used for the generation of nanostructured corneal constructs (NCCs) had a major influence on the rheological properties of the fibrin-agarose corneal equivalents. For an oscillatory shear stress of 1 Hz, well in the order of the natural oscillations of the human cornea, the NCCs had viscoelasticity values higher than those of non-nanostructured corneal constructs (N-NCCs), but similar to those of an ex vivo native cornea. The model that most resembled the rheological behavior of the native cornea was a fibrin-0.1% agarose concentration nanostructured construct. In addition, this artificial cornea model displayed optimal levels of transparency, similar to the native tissue. All these properties indicate that the fibrin-0.1% agarose concentration nanostructured construct might serve as an adequate candidate for the generation of an artificial complete cornea, not only for transplanting use but also for conducting pharmaceutical testing and biomedical research.
Collapse
Affiliation(s)
- Ana-Maria Ionescu
- Department of Optics, Faculty of Science, University of Granada, Campus Fuentenueva S/N, Granada, 18071, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|