1
|
Guo H, Wang T, Yu J, Shi Z, Liang M, Chen S, He T, Yan H. Vitreous Olink proteomics reveals inflammatory biomarkers for diagnosis and prognosis of traumatic proliferative vitreoretinopathy. Front Immunol 2024; 15:1355314. [PMID: 38455059 PMCID: PMC10917961 DOI: 10.3389/fimmu.2024.1355314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Background The aim of this study was to identify inflammatory biomarkers in traumatic proliferative vitreoretinopathy (TPVR) patients and further validate the expression curve of particular biomarkers in the rabbit TPVR model. Methods The Olink Inflammation Panel was used to compare the differentially expressed proteins (DEPs) in the vitreous of TPVR patients 7-14 days after open globe injury (OGI) (N = 19) and macular hole patients (N = 22), followed by correlation analysis between DEPs and clinical signs, protein-protein interaction (PPI) analysis, area under the receiver operating characteristic curve (AUC) analysis, and function enrichment analysis. A TPVR rabbit model was established and expression levels of candidate interleukin family members (IL-6, IL-7, and IL-33) were measured by enzyme-linked immunosorbent assay (ELISA) at 0, 1, 3, 7, 10, 14, and 28 days after OGI. Results Forty-eight DEPs were detected between the two groups. Correlation analysis showed that CXCL5, EN-RAGE, IL-7, ADA, CD5, CCL25, CASP8, TWEAK, and IL-33 were significantly correlated with clinical signs including ocular wound characteristics, PVR scoring, PVR recurrence, and final visual acuity (R = 0.467-0.699, p < 0.05), and all with optimal AUC values (0.7344-1). Correlations between DEP analysis and PPI analysis further verified that IL-6, IL-7, IL-8, IL-33, HGF, and CXCL5 were highly interactive (combined score: 0.669-0.983). These DEPs were enriched in novel pathways such as cancer signaling pathway (N = 14, p < 0.000). Vitreous levels of IL-6, IL-7, and IL-33 in the rabbit TPVR model displayed consistency with the trend in Olink data, all exhibiting marked differential expression 1 day following the OGI. Conclusion IL-7, IL-33, EN-RAGE, TWEAK, CXCL5, and CD5 may be potential biomarkers for TPVR pathogenesis and prognosis, and early post-injury may be an ideal time for TPVR intervention targeting interleukin family biomarkers.
Collapse
Affiliation(s)
- Haixia Guo
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tian Wang
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, Shaanxi, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Jinguo Yu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhemin Shi
- Department of Histology and Developmental Biology, Tianjin Medical University, Tianjin, China
| | - Minghui Liang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Ocular Trauma, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Siyue Chen
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Ocular Trauma, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Tiangeng He
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Ocular Trauma, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Peterson C, Lu Y, Santiago CP, Price AC, McNally MM, Schubert W, Nassar K, Zollner T, Blackshaw S, Eberhart CG, Singh MS. Transition to Chronic Fibrosis in an Animal Model of Retinal Detachment With Features of Proliferative Vitreoretinopathy. Invest Ophthalmol Vis Sci 2023; 64:39. [PMID: 38153753 PMCID: PMC10756252 DOI: 10.1167/iovs.64.15.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/18/2023] [Indexed: 12/29/2023] Open
Abstract
Purpose Proliferative vitreoretinopathy (PVR) is the most common cause of failure of surgically repaired rhegmatogenous retinal detachment (RRD). Chemically induced and cell injection PVR models do not fully simulate the clinical characteristics of PVR in the post-RRD context. There is an unmet need for translational models in which to study mechanisms and treatments specific to RRD-PVR. Methods RRD was induced in adult Dutch Belted rabbits. Posterior segments were fixed or processed for RNA sequencing at 6 hours and 2, 7, 14, and 35 days after induction. Histochemical staining and immunolabeling for glial fibrillary acidic protein, alpha smooth muscle actin, vascular endothelial growth factor receptor 2, CD68, and RPE 65 kDa protein were performed, and labeling intensity was scored. Single cell RNA sequencing was performed. Results Acute histopathological changes included intravitreal and intraretinal hemorrhage, leukocytic vitritis, chorioretinitis, and retinal rarefaction. Chronic lesions showed retinal atrophy, gliosis, fibrotic subretinal membranes, and epiretinal fibrovascular proliferation. Fibrillar collagen was present in the fibrocellular and fibrovascular membranes in chronic lesions. Moderate to strong labeling of glia and vasculature was detected in chronic lesions. At day 14, most cells profiled by single cell sequencing were identified as Mϋller glia and microglia, consistent with immunolabeling. Expression of several fibrillar collagen genes was upregulated in chronic lesions. Conclusions Histological and transcriptional features of this rabbit model simulate important features of human RRD-PVR, including the transition to chronic intraretinal and periretinal fibrosis. This animal model of RRD with features of PVR will enable further research on targeted treatment interventions.
Collapse
Affiliation(s)
- Cornelia Peterson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Comparative Pathobiology, Tufts University, Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States
| | - Yuchen Lu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Clayton P. Santiago
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Antoinette C. Price
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Minda M. McNally
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | | | | | | | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Charles G. Eberhart
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Mandeep S. Singh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
3
|
Gao AY, Haak AJ, Bakri SJ. In vitro laboratory models of proliferative vitreoretinopathy. Surv Ophthalmol 2023; 68:861-874. [PMID: 37209723 DOI: 10.1016/j.survophthal.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Proliferative vitreoretinopathy (PVR), the most common cause of recurrent retinal detachment, is characterized by the formation and contraction of fibrotic membranes on the surface of the retina. There are no Food and Drug Administration (FDA)-approved drugs to prevent or treat PVR. Therefore, it is necessary to develop accurate in vitro models of the disease that will enable researchers to screen drug candidates and prioritize the most promising candidates for clinical studies. We provide a summary of recent in vitro PVR models, as well as avenues for model improvement. Several in vitro PVR models were identified, including various types of cell cultures. Additionally, novel techniques that have not been used to model PVR were identified, including organoids, hydrogels, and organ-on-a-chip models. Novel ideas for improving in vitro PVR models are highlighted. Researchers may consult this review to help design in vitro models of PVR, which will aid in the development of therapies to treat the disease.
Collapse
Affiliation(s)
- Ashley Y Gao
- Mayo Clinic, Department of Ophthalmology, Rochester, Minnesota, USA
| | - Andrew J Haak
- Mayo Clinic, Department of Physiology and Biomedical Engineering, Rochester, Minnesota, USA
| | - Sophie J Bakri
- Mayo Clinic, Department of Ophthalmology, Rochester, Minnesota, USA.
| |
Collapse
|
4
|
NFκB-Mediated Expression of Phosphoinositide 3-Kinase δ Is Critical for Mesenchymal Transition in Retinal Pigment Epithelial Cells. Cells 2023; 12:cells12020207. [PMID: 36672142 PMCID: PMC9857235 DOI: 10.3390/cells12020207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) plays a vital role in a variety of human diseases including proliferative vitreoretinopathy (PVR), in which retinal pigment epithelial (RPE) cells play a key part. Transcriptomic analysis showed that the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway was up-regulated in human RPE cells upon treatment with transforming growth factor (TGF)-β2, a multifunctional cytokine associated with clinical PVR. Stimulation of human RPE cells with TGF-β2 induced expression of p110δ (the catalytic subunit of PI3Kδ) and activation of NFκB/p65. CRISPR-Cas9-mediated depletion of p110δ or NFκB/p65 suppressed TGF-β2-induced fibronectin expression and activation of Akt as well as migration of these cells. Intriguingly, abrogating expression of NFκB/p65 also blocked TGF-β2-induced expression of p110δ, and luciferase reporter assay indicated that TGF-β2 induced NFκB/p65 binding to the promoter of the PIK3CD that encodes p110δ. These data reveal that NFκB/p65-mediated expression of PI3Kδ is essential in human RPE cells for TGF-β2-induced EMT, uncovering hindrance of TGF-β2-induced expression of p110δ as a novel approach to inhibit PVR.
Collapse
|
5
|
Miller CG, Henderson M, Mantopoulos D, Leskov I, Greco T, Schwarzbauer JE, Prenner JL. The Proteome of Preretinal Tissue in Proliferative Vitreoretinopathy. Ophthalmic Surg Lasers Imaging Retina 2021; 52:S5-S12. [PMID: 34310239 PMCID: PMC11299387 DOI: 10.3928/23258160-20210518-02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND OBJECTIVE Proliferative vitreoretinopathy (PVR) is the leading cause of retinal detachment repair failure. However, the molecular pathogenesis remains incompletely understood. Determining the proteome of PVR will help to identify novel therapeutic targets. MATERIALS AND METHODS Preretinal tissue samples, delaminated during surgery from six PVR cases and one idiopathic epiretinal membrane (ERM) were analyzed by mass spectrometry. Tandem mass spectra were extracted using the UniProt database, generating a list of 896 proteins, which were subjected to pathway set and fold-change (ERM vs PVR) analyses. RESULTS Two pathways were enriched in PVR: extracellular matrix (ECM) organization and extracellular structure organization. A fold-change analysis comparing mean total spectral counts from PVR to an ERM control identified fibronectin, the ECM glycoprotein, as the protein most significantly elevated in PVR compared to ERM. CONCLUSION These data identify pathwayskey to PVR progression, including thoseinvolved in cell-mediated ECM assembly and thus tractional force generation at the cellular level. [Ophthalmic Surg Lasers Imaging Retina. 2021;52:S5-S12.].
Collapse
|
6
|
Xin T, Han H, Wu W, Huang X, Cui J, Matsubara JA, Song J, Wang F, Colyer M, Lei H. Idelalisib inhibits vitreous-induced Akt activation and proliferation of retinal pigment epithelial cells from epiretinal membranes. Exp Eye Res 2019; 190:107884. [PMID: 31786159 DOI: 10.1016/j.exer.2019.107884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/19/2019] [Accepted: 11/19/2019] [Indexed: 01/01/2023]
Abstract
Proliferative vitreoretinopathy (PVR) is a blinding fibrotic eye disease that develops in 8-10% of patients who undergo primary retinal detachment-reparative surgery and in 40-60% of patients with open-globe injury. At present, there is no pharmacological treatment for this devastating disease. Vitreal growth factors activate their respective receptors of cells in the vitreous, trigger their downstream signaling transduction (e.g. phosphoinositide 3 kinases (PI3Ks)/Akt), and drive cellular responses intrinsic to the pathogenesis of PVR. PI3Ks play a central role in experimental PVR. However, which isoform(s) are involved in PVR pathogenesis remain unknown. Herein, we show that p110δ, a catalytic subunit of receptor-regulated PI3K isoform δ, is highly expressed in epiretinal membranes from patients with PVR, and that idelalisib, a specific inhibitor of PI3Kδ, effectively inhibits vitreous-induced Akt activation, proliferation, migration and contraction of retinal pigment epithelial cells derived from an epiretinal membrane of a PVR patient. Small molecules of kinase inhibitors have shown great promise as a class of therapeutics for a variety of human diseases. The data herein suggest that idelalisib is a promising PVR prophylactic.
Collapse
Affiliation(s)
- Tianyi Xin
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, USA; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Haote Han
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, USA; College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Wenyi Wu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, USA; Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Xionggao Huang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, USA; Department of Ophthalmology, Hainan Medical University, Haikou, Hainan Province, PR China
| | - Jing Cui
- The University of British Columbia, Canada
| | | | - Jingyuan Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Fang Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Marcus Colyer
- Department of Surgery, Walter Reed-Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Hetian Lei
- Shenzhen Eye Hospital, Shenzhen, Guangdong Province, PR China; Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, USA.
| |
Collapse
|
7
|
Chen N, Hu Z, Yang Y, Han H, Lei H. Inactive Cas9 blocks vitreous-induced expression of Mdm2 and proliferation and survival of retinal pigment epithelial cells. Exp Eye Res 2019; 186:107716. [PMID: 31278903 DOI: 10.1016/j.exer.2019.107716] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 01/09/2023]
|
8
|
Han H, Chen N, Huang X, Liu B, Tian J, Lei H. Phosphoinositide 3-kinase δ inactivation prevents vitreous-induced activation of AKT/MDM2/p53 and migration of retinal pigment epithelial cells. J Biol Chem 2019; 294:15408-15417. [PMID: 31467081 DOI: 10.1074/jbc.ra119.010130] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/22/2019] [Indexed: 12/15/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that play a critical role in transmitting signals from cell-surface molecules to intracellular protein effectors. Key PI3Ks include PI3Kα, PI3Kβ, and PI3Kδ, which are regulated by receptors. The signaling pathway comprising the PI3Ks, along with a Ser/Thr kinase (AKT), a proto-oncogene product (mouse double minute (MDM)2), and a tumor suppressor protein (p53), plays an essential role in experimental proliferative vitreoretinopathy (PVR), which is a fibrotic blinding eye disorder. However, which PI3K isoforms are involved in PVR is unknown. A major characteristic of PVR is the formation of epi (or sub)-retinal membranes that consist of extracellular matrix and cells, including retinal pigment epithelium (RPE) cells, glial cells, and macrophages. RPE cells are considered key players in PVR pathogenesis. Using immunoblotting and immunofluorescence analyses, we herein provide the evidence that PI3Kδ is highly expressed in human RPEs when it is primarily expressed in leukocytes. We also found that PI3Kδ inactivation through two approaches, CRISPR/Cas9-mediated depletion and a PI3Kδ-specific inhibitor (idelalisib), not only blocks vitreous-induced activation of AKT and MDM2 but also abrogates a vitreous-stimulated decrease in p53. Furthermore, we demonstrate that PI3Kδ inactivation prevents vitreous-induced proliferation, migration, and contraction of human RPEs. These results suggest that PI3Kδ may represent a potential therapeutic target for RPE-related eye diseases, including PVR.
Collapse
Affiliation(s)
- Haote Han
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts 02114.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115.,College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China.,Zhejiang-Malaysia Joint Research Center for Traditional Medicine, Zhejiang University, Hangzhou 310027 China
| | - Na Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts 02114.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115.,Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Xionggao Huang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts 02114.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115.,Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Bing Liu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts 02114.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115
| | - Jingkui Tian
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China.,Zhejiang-Malaysia Joint Research Center for Traditional Medicine, Zhejiang University, Hangzhou 310027 China
| | - Hetian Lei
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts 02114 .,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
9
|
Eastlake K, Heywood WE, Banerjee P, Bliss E, Mills K, Khaw PT, Charteris D, Limb GA. Comparative proteomic analysis of normal and gliotic PVR retina and contribution of Müller glia to this profile. Exp Eye Res 2018; 177:197-207. [PMID: 30176221 PMCID: PMC6280037 DOI: 10.1016/j.exer.2018.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/07/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022]
Abstract
Müller glia are responsible for the neural retina regeneration observed in fish and amphibians throughout life. Despite the presence of these cells in the adult human retina, there is no evidence of regeneration occurring in humans following disease or injury. It may be possible that factors present in the degenerated retina could prevent human Müller glia from proliferating and neurally differentiating within the diseased retina. On this basis, investigations into the proteomic profile of these cells and the abundance of key proteins associated to Müller glia in the gliotic PVR retina, may assist in the identification of factors with the potential to control Müller proliferation and neural differentiation in vivo. Label free mass spectrometry identified 1527 proteins in Müller glial cell preparations, 1631 proteins in normal retina and 1074 in gliotic PVR retina. Compared to normal retina, 28 proteins were upregulated and 196 proteins downregulated by 2-fold or more in the gliotic PVR retina. As determined by comparative proteomic analyses, of the proteins highly upregulated in the gliotic PVR retina, the most highly abundant proteins in Müller cell lysates included vimentin, GFAP, polyubiquitin and HSP90a. The observations that proteins highly upregulated in the gliotic retina constitute major proteins expressed by Müller glia provide the basis for further studies into mechanisms that regulate their production. In addition investigations aimed at controlling the expression of these proteins may aid in the identification of factors that could potentially promote endogenous regeneration of the adult human retina after disease or injury. Proteomic analyses showed evidence for Müller glia contribution to retinal gliosis. Polyubiquitin-C and HSP90a produced by Müller glia, are upregulated in gliotic retina. Müller glia are a source of prelamin, elongation factor and serpin found in retina.
Collapse
Affiliation(s)
- Karen Eastlake
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK
| | - Wendy E Heywood
- Centre for Translational Omics, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Phillip Banerjee
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK
| | - Emily Bliss
- Centre for Translational Omics, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Kevin Mills
- Centre for Translational Omics, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Peng T Khaw
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK
| | - David Charteris
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK
| | - G Astrid Limb
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK.
| |
Collapse
|
10
|
Márkus B, Pató Z, Sarang Z, Albert R, Tőzsér J, Petrovski G, Csősz É. The proteomic profile of a mouse model of proliferative vitreoretinopathy. FEBS Open Bio 2017; 7:1166-1177. [PMID: 28781956 PMCID: PMC5537063 DOI: 10.1002/2211-5463.12252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/02/2017] [Accepted: 05/27/2017] [Indexed: 11/24/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR) develops as a complication of retinal detachment surgery and represents a devastating condition leading to serious vision loss. A good animal model that permits extensive functional studies and drug testing is crucial in finding better therapeutic modalities for PVR. A previously established mouse model, using dispase injection, was analyzed from the proteomic point of view, examining global protein profile changes by 2D electrophoresis, image analysis and HPLC–tandem mass spectrometry‐based protein identification. The easy applicability of the mouse model was used to study the role of transglutaminase 2 (TG2) in PVR formation by proteomic examination of dispase‐induced TG2 knockout vitreous samples. Our data demonstrate that, despite the altered appearance of crystallin proteins, the lack of TG2 did not prevent the development of PVR.
Collapse
Affiliation(s)
- Bernadett Márkus
- Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Hungary
| | - Zsuzsanna Pató
- Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Hungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Hungary
| | - Réka Albert
- Department of Ophthalmology Faculty of Medicine University of Szeged Hungary
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Hungary
| | - Goran Petrovski
- Department of Ophthalmology Faculty of Medicine University of Szeged Hungary.,Department of Ophthalmology Oslo University Hospital and University of Oslo Norway
| | - Éva Csősz
- Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Hungary
| |
Collapse
|
11
|
Ma G, Duan Y, Huang X, Qian CX, Chee Y, Mukai S, Cui J, Samad A, Matsubara JA, Kazlauskas A, D'Amore PA, Gu S, Lei H. Prevention of Proliferative Vitreoretinopathy by Suppression of Phosphatidylinositol 5-Phosphate 4-Kinases. Invest Ophthalmol Vis Sci 2017; 57:3935-43. [PMID: 27472081 PMCID: PMC4974024 DOI: 10.1167/iovs.16-19405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Previous studies have shown that vitreous stimulates degradation of the tumor suppressor protein p53 and that knockdown of phosphatidylinositol 5-phosphate 4-kinases (PI5P4Kα and -β) abrogates proliferation of p53-deficient cells. The purpose of this study was to determine whether vitreous stimulated expression of PI5P4Kα and -β and whether suppression of PI5P4Kα and -β would inhibit vitreous-induced cellular responses and experimental proliferative vitreoretinopathy (PVR). Methods PI5P4Kα and -β encoded by PIP4K2A and 2B, respectively, in human ARPE-19 cells were knocked down by stably expressing short hairpin (sh)RNA directed at human PIP4K2A and -2B. In addition, we rescued expression of PI5P4Kα and -β by re-expressing mouse PIP4K2A and -2B in the PI5P4Kα and -β knocked-down ARPE-19 cells. Expression of PI5P4Kα and -β was determined by Western blot and immunofluorescence. The following cellular responses were monitored: cell proliferation, survival, migration, and contraction. Moreover, the cell potential of inducing PVR was examined in a rabbit model of PVR effected by intravitreal cell injection. Results We found that vitreous enhanced expression of PI5P4Kα and -β in RPE cells and that knocking down PI5P4Kα and -β abrogated vitreous-stimulated cell proliferation, survival, migration, and contraction. Re-expression of mouse PIP4Kα and -β in the human PI5P4Kα and -β knocked-down cells recovered the loss of vitreous-induced cell contraction. Importantly, suppression of PI5P4Kα and -β abrogated the pathogenesis of PVR induced by intravitreal cell injection in rabbits. Moreover, we revealed that expression of PI5P4Kα and -β was abundant in epiretinal membranes from PVR grade C patients. Conclusions The findings from this study indicate that PI5P4Kα and -β could be novel therapeutic targets for the treatment of PVR.
Collapse
Affiliation(s)
- Gaoen Ma
- Schepens Eye Research Institute, Boston, Massachusetts, United States 2Massachusetts Eye and Ear, Boston, Massachusetts, United States 3Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States 4Aier School of Ophthalmology
| | - Yajian Duan
- Schepens Eye Research Institute, Boston, Massachusetts, United States 2Massachusetts Eye and Ear, Boston, Massachusetts, United States 3Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Xionggao Huang
- Schepens Eye Research Institute, Boston, Massachusetts, United States 3Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Cynthia X Qian
- Massachusetts Eye and Ear, Boston, Massachusetts, United States 3Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Yewlin Chee
- Massachusetts Eye and Ear, Boston, Massachusetts, United States 3Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Shizuo Mukai
- Massachusetts Eye and Ear, Boston, Massachusetts, United States 3Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Jing Cui
- The University of British Columbia, Vancouver, British Columbia, Canada
| | - Arif Samad
- Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Andrius Kazlauskas
- Schepens Eye Research Institute, Boston, Massachusetts, United States 3Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Patricia A D'Amore
- Schepens Eye Research Institute, Boston, Massachusetts, United States 3Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Shuyan Gu
- Aier School of Ophthalmology, Central South University, Changsha, Changsha Province, China
| | - Hetian Lei
- Schepens Eye Research Institute, Boston, Massachusetts, United States 3Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
12
|
Abstract
Current proteomic technologies can effectively be used to study the proteins of the vitreous body and retina in health and disease. The use of appropriate samples, analytical platform and bioinformatic method are essential factors to consider when undertaking such studies. Certain proteins may hinder the detection and evaluation of more relevant proteins associated with pathological processes if not carefully considered, particularly in the sample preparation and data analysis stages. The utilization of more than one quantification technique and database search program to expand the level of proteome coverage and analysis will help to generate more robust and worthwhile results. This review discusses important aspects of sample processing and the use of label and label-free quantitative proteomics strategies applied to the vitreous and retina.
Collapse
|
13
|
Asato R, Yoshida S, Ogura A, Nakama T, Ishikawa K, Nakao S, Sassa Y, Enaida H, Oshima Y, Ikeo K, Gojobori T, Kono T, Ishibashi T. Comparison of gene expression profile of epiretinal membranes obtained from eyes with proliferative vitreoretinopathy to that of secondary epiretinal membranes. PLoS One 2013; 8:e54191. [PMID: 23372684 PMCID: PMC3553111 DOI: 10.1371/journal.pone.0054191] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/07/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Proliferative vitreoretinopathy (PVR) is a destructive complication of retinal detachment and vitreoretinal surgery which can lead to severe vision reduction by tractional retinal detachments. The purpose of this study was to determine the gene expression profile of epiretinal membranes (ERMs) associated with a PVR (PVR-ERM) and to compare it to the expression profile of less-aggressive secondary ERMs. METHODOLOGY/PRINCIPAL FINDINGS A PCR-amplified complementary DNA (cDNA) library was constructed using the RNAs isolated from ERMs obtained during vitrectomy. The sequence from the 5' end was obtained for randomly selected clones and used to generate expressed sequence tags (ESTs). We obtained 1116 nonredundant clusters representing individual genes expressed in PVR-ERMs, and 799 clusters representing the genes expressed in secondary ERMs. The transcriptome of the PVR-ERMs was subdivided by functional subsets of genes related to metabolism, cell adhesion, cytoskeleton, signaling, and other functions, by FatiGo analysis. The genes highly expressed in PVR-ERMs were compared to those expressed in the secondary ERMs, and these were subdivided by cell adhesion, proliferation, and other functions. Querying 10 cell adhesion-related genes against the STRING database yielded 70 possible physical relationships to other genes/proteins, which included an additional 60 genes that were not detected in the PVR-ERM library. Of these, soluble CD44 and soluble vascular cellular adhesion molecule-1 were significantly increased in the vitreous of patients with PVR. CONCLUSIONS/SIGNIFICANCE Our results support an earlier hypothesis that a PVR-ERM, even from genomic points of view, is an aberrant form of wound healing response. Genes preferentially expressed in PVR-ERMs may play an important role in the progression of PVR and could be served as therapeutic targets.
Collapse
Affiliation(s)
- Ryo Asato
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigeo Yoshida
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- * E-mail:
| | - Atsushi Ogura
- Institute for Genome Research, The University of Tokushima, Tokushima, Japan
| | - Takahito Nakama
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keijiro Ishikawa
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shintaro Nakao
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukio Sassa
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Enaida
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuji Oshima
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuho Ikeo
- Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, Mishima, Japan
| | - Takashi Gojobori
- Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, Mishima, Japan
| | - Toshihiro Kono
- Department of Ophthalmology, Chikushi Hospital, Chikusino-shi, Fukuoka University, Fukuoka, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|