1
|
Lin CC, Liao SL, Wei YH. The Role of Interleukin-17A and NLRP3 Inflammasome in the Pathogenesis of Graves' Ophthalmopathy. Life (Basel) 2023; 13:life13041007. [PMID: 37109536 PMCID: PMC10141012 DOI: 10.3390/life13041007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The development of Graves' ophthalmopathy (GO) is associated with autoimmune dysfunction. Recent studies have indicated that IL-17A, inflammasomes, and related cytokines may be involved in the etiology of GO. We sought to investigate the pathogenic role of IL-17A and NLRP3 inflammasomes in GO. Orbital fat specimens were collected from 30 patients with GO and 30 non-GO controls. Immunohistochemical staining and orbital fibroblast cultures were conducted for both groups. IL-17A was added to the cell cultures, and cytokine expression, signaling pathways, and inflammasome mechanisms were investigated using reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, Western blotting, and small interfering RNA (siRNA) methods. Immunohistochemical staining showed higher NLRP3 expression in GO orbital tissue than in non-GO controls. IL-17A upregulated pro-IL-1β mRNA levels and IL-1β protein levels in the GO group. Furthermore, IL-17A was confirmed to enhance caspase-1 and NLRP3 protein expression in orbital fibroblasts, suggesting NLRP3 inflammasome activation. Inhibiting caspase-1 activity could also decrease IL-1β secretion. In siRNA-transfected orbital fibroblasts, significantly decreased NLRP3 expression was observed, and IL-17A-mediated pro-IL-1β mRNA release was also downregulated. Our observations illustrate that IL-17A promotes IL-1β production from orbital fibroblasts via the NLRP3 inflammasome in GO, and cytokines subsequently released may induce more inflammation and autoimmunity.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Ophthalmology, Taipei City Hospital, Taipei 103212, Taiwan
| | - Shu-Lang Liao
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Yi-Hsuan Wei
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100225, Taiwan
| |
Collapse
|
2
|
Hu J, Zhou S, Guo W. Construction of the coexpression network involved in the pathogenesis of thyroid eye disease via bioinformatics analysis. Hum Genomics 2022; 16:38. [PMID: 36076300 PMCID: PMC9461120 DOI: 10.1186/s40246-022-00412-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
Background Thyroid eye disease (TED) is the most common orbital pathology that occurs in up to 50% of patients with Graves’ disease. Herein, we aimed at discovering the possible hub genes and pathways involved in TED based on bioinformatical approaches. Results The GSE105149 and GSE58331 datasets were downloaded from the Gene Expression Omnibus (GEO) database and merged for identifying TED-associated modules by weighted gene coexpression network analysis (WGCNA) and local maximal quasi-clique merger (lmQCM) analysis. EdgeR was run to screen differentially expressed genes (DEGs). Transcription factor (TF), microRNA (miR) and drug prediction analyses were performed using ToppGene suite. Function enrichment analysis was used to investigate the biological function of genes. Protein–protein interaction (PPI) analysis was performed based on the intersection between the list of genes obtained by WGCNA, lmQCM and DEGs, and hub genes were identified using the MCODE plugin. Based on the overlap of 497 genes retrieved from the different approaches, a robust TED coexpression network was constructed and 11 genes (ATP6V1A, PTGES3, PSMD12, PSMA4, METAP2, DNAJA1, PSMA1, UBQLN1, CCT2, VBP1 and NAA50) were identified as hub genes. Key TFs regulating genes in the TED-associated coexpression network, including NFRKB, ZNF711, ZNF407 and MORC2, and miRs including hsa-miR-144, hsa-miR-3662, hsa-miR-12136 and hsa-miR-3646, were identified. Genes in the coexpression network were enriched in the biological processes including proteasomal protein catabolic process and proteasome-mediated ubiquitin-dependent protein catabolic process and the pathways of endocytosis and ubiquitin-mediated proteolysis. Drugs perturbing genes in the coexpression network were also predicted and included enzyme inhibitors, chlorodiphenyl and finasteride. Conclusions For the first time, TED-associated coexpression network was constructed and key genes and their functions, as well as TFs, miRs and drugs, were predicted. The results of the present work may be relevant in the treatment and diagnosis of TED and may boost molecular studies regarding TED. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-022-00412-0.
Collapse
Affiliation(s)
- Jinxing Hu
- Department of Endocrinology, HwaMei Hospital, University of Chinese Academy of Sciences, 41 Northwest Street Zhejiang Province, Ningbo, 315010, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, China
| | - Shan Zhou
- Department of Endocrinology, HwaMei Hospital, University of Chinese Academy of Sciences, 41 Northwest Street Zhejiang Province, Ningbo, 315010, China. .,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, China.
| | - Weiying Guo
- Department of Endocrinology, HwaMei Hospital, University of Chinese Academy of Sciences, 41 Northwest Street Zhejiang Province, Ningbo, 315010, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, China
| |
Collapse
|
3
|
Ferris WF. The Role and Interactions of Programmed Cell Death 4 and its Regulation by microRNA in Transformed Cells of the Gastrointestinal Tract. Front Oncol 2022; 12:903374. [PMID: 35847932 PMCID: PMC9277020 DOI: 10.3389/fonc.2022.903374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022] Open
Abstract
Data from GLOBOCAN 2020 estimates that there were 19.3 million new cases of cancer and 10.0 million cancer-related deaths in 2020 and that this is predicted to increase by 47% in 2040. The combined burden of cancers of the gastrointestinal (GI) tract, including oesophageal-, gastric- and colorectal cancers, resulted in 22.6% of the cancer-related deaths in 2020 and 18.7% of new diagnosed cases. Understanding the aetiology of GI tract cancers should have a major impact on future therapies and lessen this substantial burden of disease. Many cancers of the GI tract have suppression of the tumour suppressor Programmed Cell Death 4 (PDCD4) and this has been linked to the expression of microRNAs which bind to the untranslated region of PDCD4 mRNA and either inhibit translation or target the mRNA for degradation. This review highlights the properties of PDCD4 and documents the evidence for the regulation of PDCD4 expression by microRNAs in cancers of the GI tract.
Collapse
|
4
|
Jia Y, Zhuang X, Zhang Y, Zhao M, Chen N, Li W, Zhu F, Guo C, Li Y, Wang Q, Li Y, Zhang L. The brain targeted delivery of programmed cell death 4 specific siRNA protects mice from CRS-induced depressive behavior. Cell Death Dis 2021; 12:1077. [PMID: 34772918 PMCID: PMC8590023 DOI: 10.1038/s41419-021-04361-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022]
Abstract
Depression is one of the most common psychiatric disorders. Recently, studies demonstrate that antidepressants generating BDNF not only maintain synaptic signal transmission but also repress neuroinflammatory cytokines such as IL-6 and IL-1β. Therefore, promoting BDNF expression provides a strategy for the treatment of depression. Our recent research has indicated that programmed cell death 4 (Pdcd4) is a new target for antidepressant treatment by facilitating BDNF. Herein, we modified Pdcd4 specific small interfering RNA (siPdcd4) with the rabies virus glycoprotein peptide (RVG/siPdcd4) which enables it cross the blood-brain barrier (BBB). We found that RVG/siPdcd4 complex was selectively delivered to neurons and microglia and silenced the expression of Pdcd4, thereby up-regulating the level of BDNF and down-regulating IL-6 and IL-1β expression. More importantly, RVG/siPdcd4 injection attenuated synaptic plasticity impairment and protected mice from CRS-induced depressive behavior. These findings suggest that RVG/siPdcd4 complex is a potential therapeutic medicine for depression.
Collapse
Affiliation(s)
- Yufeng Jia
- Shandong Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China
| | - Xiao Zhuang
- Shandong Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China
| | - Yi Zhang
- Shandong Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China
| | - Ming Zhao
- Shandong Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China
| | - Nuo Chen
- Shandong Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China
| | - Wen Li
- Shandong Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China
| | - Faliang Zhu
- Shandong Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China
| | - Chun Guo
- Shandong Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China
| | - Yan Li
- Department of Pathogenic Biology, School of Basic Medical Science, Shandong University, 250012, Jinan, Shandong, China
| | - Qun Wang
- Shandong Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China
| | - Yuan Li
- Shandong Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China.
| | - Lining Zhang
- Shandong Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China.
| |
Collapse
|
5
|
Virakul S, Somparn P, Pisitkun T, van der Spek PJ, Dalm VASH, Paridaens D, van Hagen PM, Hirankarn N, Palaga T, Dik WA. Integrative Analysis of Proteomics and DNA Methylation in Orbital Fibroblasts From Graves' Ophthalmopathy. Front Endocrinol (Lausanne) 2020; 11:619989. [PMID: 33658982 PMCID: PMC7919747 DOI: 10.3389/fendo.2020.619989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Graves' ophthalmopathy (GO) is a frequent extrathyroidal complication of Graves' hyperthyroidism. Orbital fibroblasts contribute to both orbital tissue inflammation and remodeling in GO, and as such are crucial cellular elements in active GO and inactive GO. However, so far it is largely unknown whether GO disease progression is associated with functional reprogramming of the orbital fibroblast effector function. Therefore, the aim of this study was to compare both the proteome and global DNA methylation patterns between orbital fibroblasts isolated from active GO, inactive GO and healthy controls. METHODS Orbital fibroblasts from inactive GO (n=5), active GO (n=4) and controls (n=5) were cultured and total protein and DNA was isolated. Labelled and fractionated proteins were analyzed with a liquid chromatography tandem-mass spectrometer (LC-MS/MS). Data are available via ProteomeXchange with identifier PXD022257. Furthermore, bisulphite-treated DNA was analyzed for methylation pattern with the Illumina Infinium Human Methylation 450K beadchip. In addition, RNA was isolated from the orbital fibroblasts for real-time quantitative (RQ)-PCR. Network and pathway analyses were performed. RESULTS Orbital fibroblasts from active GO displayed overexpression of proteins that are typically involved in inflammation, cellular proliferation, hyaluronan synthesis and adipogenesis, while various proteins associated with extracellular matrix (ECM) biology and fibrotic disease, were typically overexpressed in orbital fibroblasts from inactive GO. Moreover, orbital fibroblasts from active GO displayed hypermethylation of genes that linked to inflammation and hypomethylated genes that linked to adipogenesis and autoimmunity. Further analysis revealed networks that contained molecules to which both hypermethylated and hypomethylated genes were linked, including NF-κB, ERK1/2, Alp, RNA polymerase II, Akt and IFNα. In addition, NF-κB, Akt and IFNα were also identified in networks that were derived from the differentially expressed proteins. Generally, poor correlation between protein expression, DNA methylation and mRNA expression was observed. CONCLUSIONS Both the proteomics and DNA methylation data support that orbital fibroblasts from active GO are involved in inflammation, adipogenesis, and glycosaminoglycan production, while orbital fibroblasts from inactive disease are more skewed towards an active role in extracellular matrix remodeling. This switch in orbital fibroblast effector function may have therapeutic implications and further studies into the underlying mechanism are thus warranted.
Collapse
Affiliation(s)
- Sita Virakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Research affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Research affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Peter J. van der Spek
- Department of Bioinformatics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Virgil A. S. H. Dalm
- Department of Immunology, Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Dion Paridaens
- Rotterdam Eye Hospital, Rotterdam, Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, Netherlands
| | - P. Martin van Hagen
- Department of Immunology, Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
- Rotterdam Eye Hospital, Rotterdam, Netherlands
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Willem A. Dik
- Department of Immunology, Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
- *Correspondence: Willem A. Dik,
| |
Collapse
|
6
|
DeTemple V, Satzger I, Walter A, Schaper K, Gutzmer R. Effects of mammalian target of rapamycin inhibitors on cytokine production and differentiation in keratinocytes. Exp Dermatol 2018; 25:775-82. [PMID: 27194247 DOI: 10.1111/exd.13079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2016] [Indexed: 12/15/2022]
Abstract
Risk factors for the development of cutaneous squamous cell carcinoma (cSCC) include ultraviolet radiation and immunosuppression. In particular, solid organ transplant recipients show a high incidence of cSCC, depending on the immunosuppressive regimen. While azathioprine or calcineurin inhibitors increase the risk of cSCC development, mammalian target of rapamycin (mTOR) inhibitors decreases this risk. At the moment, the mechanisms behind this protective effect of mTOR inhibitors are not fully understood. We evaluated effects of the mTOR inhibitors sirolimus and everolimus on keratinocytes, cSCC cell lines and an organotypic skin model in vitro in regard to proliferation, cytokine secretion and differentiation. We show that mTOR inhibitors block keratinocyte proliferation and alter cytokine and cytokeratin production: in particular, mTOR inhibition leads to upregulation of interleukin-6 and downregulation of cytokeratin 10. Therefore, mTOR inhibitors have effects on keratinocytes, which could play a role in the pathogenesis of cSCC.
Collapse
Affiliation(s)
- Viola DeTemple
- Department for Dermatology, Allergology and Venerology, Skin Cancer Center Hannover, Hannover Medical School, Hannover, Germany.
| | - Imke Satzger
- Department for Dermatology, Allergology and Venerology, Skin Cancer Center Hannover, Hannover Medical School, Hannover, Germany
| | - Antje Walter
- Department for Dermatology, Allergology and Venerology, Skin Cancer Center Hannover, Hannover Medical School, Hannover, Germany
| | - Katrin Schaper
- Department for Dermatology, Allergology and Venerology, Skin Cancer Center Hannover, Hannover Medical School, Hannover, Germany
| | - Ralf Gutzmer
- Department for Dermatology, Allergology and Venerology, Skin Cancer Center Hannover, Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Mebert AM, Baglole CJ, Desimone MF, Maysinger D. Nanoengineered silica: Properties, applications and toxicity. Food Chem Toxicol 2017; 109:753-770. [DOI: 10.1016/j.fct.2017.05.054] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/26/2017] [Indexed: 02/06/2023]
|
8
|
Yang H, Zhang Y, Li W, Lao C, Li M, Zheng Y. Altered microRNA expression profiles in lung damage induced by nanosized SiO 2. Bioengineered 2016; 8:45-54. [PMID: 27689473 DOI: 10.1080/21655979.2016.1227578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The objective of the present research is to explore miRNAs expression profiles in lung tissue of rat treated by nanosized SiO2 in the light of normal at diverse dosages, time, predict their target genes, and probe the biological function and regulation of miRNA in the lung damage process caused by nanosized SiO2. Up-regulation of rno-miR-208, rno-miR-212 and rno-miR-18a in lung tissue mainly characterized by inflammation of SD rats caused by nanosized SiO2 particles instilled intratracheally at 7th, 15th 30th d using Illumina HiSeq2000 sequencing technique and were further verified by quantitative reverse transcriptase polymerase chain reaction (qRT PCR) assay. Lung damage is mainly with characteristics of lung interstitial fibrosis, upregulation of rno-miR-212, rno-miR-144, rno-miR-702-3p, rno-miR-379 and rno-miR-127, down-regulation of rno-miR-541 at 60th, 90th d post-exposure. As target genes of rno-miR-208, rno-miR-212 and rno-miR-18a respectively, there was no statistical significance of programmed cell death 4 (PDCD4), LIN28B and connective tissue growth factor (CTGF) mRNA expression level (P > 0.05) compared to β-actin as internal controls detected by Real-time quantitative PCR. The differences in protein gray value ratio of PDCD4, LIN28B and CTGF detected by Western blotting test were statistically significant (P < 0.05). These results suggested that miR-208, miR-212 and miR-18a may take effects in rats' lung damage lead by nanosized SiO2. Their target genes of PDCD4, LIN28B and CTGF functioned in translation level of target genes in regulation of inflammatory signaling pathways and involved in the formation of tissue fibrosis.
Collapse
Affiliation(s)
- Hong Yang
- a Key Laboratory of Environmental Medicine Engineering , Ministry of Education, School of Public Health, Southeast University , Nanjing , China
| | - Yingjian Zhang
- a Key Laboratory of Environmental Medicine Engineering , Ministry of Education, School of Public Health, Southeast University , Nanjing , China
| | - Wenchao Li
- a Key Laboratory of Environmental Medicine Engineering , Ministry of Education, School of Public Health, Southeast University , Nanjing , China
| | - Canshan Lao
- a Key Laboratory of Environmental Medicine Engineering , Ministry of Education, School of Public Health, Southeast University , Nanjing , China
| | - Mingyue Li
- a Key Laboratory of Environmental Medicine Engineering , Ministry of Education, School of Public Health, Southeast University , Nanjing , China
| | - Yi Zheng
- a Key Laboratory of Environmental Medicine Engineering , Ministry of Education, School of Public Health, Southeast University , Nanjing , China
| |
Collapse
|
9
|
Gillespie ZE, Pickering J, Eskiw CH. Better Living through Chemistry: Caloric Restriction (CR) and CR Mimetics Alter Genome Function to Promote Increased Health and Lifespan. Front Genet 2016; 7:142. [PMID: 27588026 PMCID: PMC4988992 DOI: 10.3389/fgene.2016.00142] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/21/2016] [Indexed: 12/19/2022] Open
Abstract
Caloric restriction (CR), defined as decreased nutrient intake without causing malnutrition, has been documented to increase both health and lifespan across numerous organisms, including humans. Many drugs and other compounds naturally occurring in our diet (nutraceuticals) have been postulated to act as mimetics of caloric restriction, leading to a wave of research investigating the efficacy of these compounds in preventing age-related diseases and promoting healthier, longer lifespans. Although well studied at the biochemical level, there are still many unanswered questions about how CR and CR mimetics impact genome function and structure. Here we discuss how genome function and structure are influenced by CR and potential CR mimetics, including changes in gene expression profiles and epigenetic modifications and their potential to identify the genetic fountain of youth.
Collapse
Affiliation(s)
- Zoe E Gillespie
- Department of Food and Bioproduct Sciences, University of Saskatchewan Saskatoon, SK, Canada
| | - Joshua Pickering
- Department of Biochemistry, University of Saskatchewan Saskatoon, SK, Canada
| | - Christopher H Eskiw
- Department of Food and Bioproduct Sciences, University of SaskatchewanSaskatoon, SK, Canada; Department of Biochemistry, University of SaskatchewanSaskatoon, SK, Canada
| |
Collapse
|
10
|
Li H, Yuan Y, Zhang Y, He Q, Xu R, Ge F, Wu C. Celastrol inhibits IL-1β-induced inflammation in orbital fibroblasts through the suppression of NF-κB activity. Mol Med Rep 2016; 14:2799-806. [PMID: 27484716 DOI: 10.3892/mmr.2016.5570] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/24/2016] [Indexed: 11/06/2022] Open
Abstract
Graves' disease is an autoimmune disease of the thyroid gland, which is characterized by hyperthyroidism, diffuse goiter and Graves' ophthalmopathy (GO). Although several therapeutic strategies for the treatment of GO have been developed, the effectiveness and the safety profile of these therapies remain to be fully elucidated. Therefore, examination of novel GO therapies remains an urgent requirement. Celastrol, a triterpenoid isolated from traditional Chinese medicine, is a promising drug for the treatment of various inflammatory and autoimmune diseases. CCK‑8 and apoptosis assays were performed to investigate cytotoxicity of celastrol and effect on apoptosis on orbital fibroblasts. Reverse transcription‑polymerase chain reaction, western blotting and ELISAs were performed to examine the effect of celastrol on interleukin (IL)‑1β‑induced inflammation in orbital fibroblasts from patients with GO. The results demonstrated that celastrol significantly attenuated the expression of IL‑6, IL‑8, cyclooxygenase (COX)‑2 and intercellular adhesion molecule‑1 (ICAM‑1), and inhibited IL‑1β‑induced increases in the expression of IL‑6, IL‑8, ICAM‑1 and COX‑2. The levels of prostaglandin E2 in orbital fibroblasts induced by IL‑1β were also suppressed by celastrol. Further investigation revealed that celastrol suppressed the IL‑1β‑induced inflammatory responses in orbital fibroblasts through inhibiting the activation of nuclear factor (NF)‑κB. Taken together, these results suggested that celastrol attenuated the IL‑1β‑induced pro‑inflammatory pathway in orbital fibroblasts from patients with GO, which was associated with the suppression of NF-κB activation.
Collapse
Affiliation(s)
- Hong Li
- Department of Endocrinology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Yifei Yuan
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Yali Zhang
- Department of Endocrinology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Qianwen He
- Longua Medical School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Rongjuan Xu
- Department of Endocrinology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Fangfang Ge
- Department of Endocrinology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Chen Wu
- Department of Endocrinology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
11
|
Lee JY, Paik JS, Yun M, Lee SB, Yang SW. The Effect of (-)-Epigallocatechin-3-Gallate on IL-1β Induced IL-8 Expression in Orbital Fibroblast from Patients with Thyroid-Associated Ophthalmopathy. PLoS One 2016; 11:e0148645. [PMID: 26848751 PMCID: PMC4743944 DOI: 10.1371/journal.pone.0148645] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 01/20/2016] [Indexed: 01/20/2023] Open
Abstract
Orbital fibroblasts have been reported to be an important effector cells for the development of thyroid-associated ophthalmopathy (TAO). Orbital fibroblasts secrete various inflammatory cytokines in response to an inflammatory stimulation, leading to TAO-related tissue swelling. It has also been reported that (-)-epigallocatechin-3-gallate (EGCG), a major polyphenolic constituent of green tea, has antioxidant and anti-inflammatory properties. In the current study, we investigated the issue of whether or how EGCG affects the interleukin (IL)-1β-induced secretion of IL-8 in human orbital fibroblasts from TAO patients. Treatment with EGCG significantly reduced the level of IL-1β-induced secretion of IL-8 and the expression of IL-8 mRNA. IL-1β-induced the degradation of IκBα, and the phosphorylation of p38 and ERK, and the IL-1β-induced expression of IL-8 mRNA was inhibited by specific inhibitors, such as BAY-117085 for NF-kB, SB203580 for p38, and PD98059 for ERK. In addition, treatment with EGCG inhibited the IL-1β-induced degradation of IκBα, and the phosphorylation of p38 and ERK. However, pre-treatment with antioxidants, NVN and NAC, which suppressed ROS generation, did not reduce IL-8 expression in IL-1β-treated orbital fibroblasts, suggesting that the IL-1β-induced IL-8 expression is not mediated by the generation of ROS. These results show that EGCG suppresses the IL-1β-induced expression of IL-8 through inhibition of the NF-κB, p38, and ERK pathways. These findings could contribute to the development of new types of EGCG-containing pharmacological agents for use in the treatment of TAO.
Collapse
Affiliation(s)
- Ji-Young Lee
- Department of Ophthalmology and Visual Science, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji-Sun Paik
- Department of Ophthalmology and Visual Science, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- * E-mail:
| | - Mihee Yun
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seong-Beom Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Suk-Woo Yang
- Department of Ophthalmology and Visual Science, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
12
|
Gillespie ZE, MacKay K, Sander M, Trost B, Dawicki W, Wickramarathna A, Gordon J, Eramian M, Kill IR, Bridger JM, Kusalik A, Mitchell JA, Eskiw CH. Rapamycin reduces fibroblast proliferation without causing quiescence and induces STAT5A/B-mediated cytokine production. Nucleus 2015; 6:490-506. [PMID: 26652669 PMCID: PMC4915505 DOI: 10.1080/19491034.2015.1128610] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/24/2015] [Accepted: 11/30/2015] [Indexed: 12/25/2022] Open
Abstract
Rapamycin is a well-known inhibitor of the Target of Rapamycin (TOR) signaling cascade; however, the impact of this drug on global genome function and organization in normal primary cells is poorly understood. To explore this impact, we treated primary human foreskin fibroblasts with rapamycin and observed a decrease in cell proliferation without causing cell death. Upon rapamycin treatment chromosomes 18 and 10 were repositioned to a location similar to that of fibroblasts induced into quiescence by serum reduction. Although similar changes in positioning occurred, comparative transcriptome analyses demonstrated significant divergence in gene expression patterns between rapamycin-treated and quiescence-induced fibroblasts. Rapamycin treatment induced the upregulation of cytokine genes, including those from the Interleukin (IL)-6 signaling network, such as IL-8 and the Leukemia Inhibitory Factor (LIF), while quiescent fibroblasts demonstrated up-regulation of genes involved in the complement and coagulation cascade. In addition, genes significantly up-regulated by rapamycin treatment demonstrated increased promoter occupancy of the transcription factor Signal Transducer and Activator of Transcription 5A/B (STAT5A/B). In summary, we demonstrated that the treatment of fibroblasts with rapamycin decreased proliferation, caused chromosome territory repositioning and induced STAT5A/B-mediated changes in gene expression enriched for cytokines.
Collapse
Affiliation(s)
- Zoe E Gillespie
- Department of Food and Bioproduct Sciences; University of Saskatchewan; Saskatoon, Canada
- Institute of Environment, Health and Societies; Brunel University; London, Uxbridge, United Kingdom
| | - Kimberly MacKay
- Department of Computer Science; University of Saskatchewan; Saskatoon, Canada
| | - Michelle Sander
- Department of Food and Bioproduct Sciences; University of Saskatchewan; Saskatoon, Canada
| | - Brett Trost
- Department of Computer Science; University of Saskatchewan; Saskatoon, Canada
| | - Wojciech Dawicki
- Department of Medicine; Division of Respirology, Critical Care and Sleep Medicine; Royal University Hospital; Saskatoon, Canada
| | - Aruna Wickramarathna
- Department of Food and Bioproduct Sciences; University of Saskatchewan; Saskatoon, Canada
| | - John Gordon
- Department of Medicine; Division of Respirology, Critical Care and Sleep Medicine; Royal University Hospital; Saskatoon, Canada
| | - Mark Eramian
- Department of Computer Science; University of Saskatchewan; Saskatoon, Canada
| | - Ian R Kill
- Institute of Environment, Health and Societies; Brunel University; London, Uxbridge, United Kingdom
| | - Joanna M Bridger
- Institute of Environment, Health and Societies; Brunel University; London, Uxbridge, United Kingdom
| | - Anthony Kusalik
- Department of Computer Science; University of Saskatchewan; Saskatoon, Canada
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology; University of Toronto; Toronto, Canada
- Centre for the Analysis of Genome Evolution and Function; University of Toronto, Toronto, ON, Canada
| | - Christopher H Eskiw
- Department of Food and Bioproduct Sciences; University of Saskatchewan; Saskatoon, Canada
- Institute of Environment, Health and Societies; Brunel University; London, Uxbridge, United Kingdom
| |
Collapse
|