1
|
Ren Y, Liang H, Xie M, Zhang M. Natural plant medications for the treatment of retinal diseases: The blood-retinal barrier as a clue. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155568. [PMID: 38795692 DOI: 10.1016/j.phymed.2024.155568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/15/2024] [Accepted: 03/23/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Retinal diseases significantly contribute to the global burden of visual impairment and blindness. The occurrence of retinal diseases is often accompanied by destruction of the blood‒retinal barrier, a vital physiological structure responsible for maintaining the stability of the retinal microenvironment. However, detailed summaries of the factors damage the blood‒retinal barrier and treatment methods involving natural plant medications are lacking. PURPOSE To comprehensively summarize and analyze the protective effects of active substances in natural plant medications on damage to the blood-retina barrier that occurs when retinal illnesses, particularly diabetic retinopathy, and examine their medicinal value and future development prospects. METHODS In this study, we searched for studies published in the ScienceDirect, PubMed, and Web of Science databases. The keywords used included natural plant medications, plants, natural herbs, blood retinal barrier, retinal diseases, diabetic retinopathy, age-related macular degeneration, and uveitis. Chinese herbal compound articles, non-English articles, warning journals, and duplicates were excluded from the analysis. RESULTS The blood‒retinal barrier is susceptible to high glucose, aging, immune responses, and other factors that destroy retinal homeostasis, resulting in pathological changes such as apoptosis and increased vascular permeability. Existing studies have shown that the active compounds or extracts of many natural plants have the effect of repairing blood-retinal barrier dysfunction. Notably, berberine, puerarin, and Lycium barbarum polysaccharides exhibited remarkable therapeutic effects. Additionally, curcumin, astragaloside IV, hesperidin, resveratrol, ginsenoside Rb1, luteolin, and Panax notoginseng saponins can effectively protect the blood‒retinal barrier by interfering with distinct pathways. The active ingredients found in natural plant medications primarily repair the blood‒retinal barrier by modulating pathological factors such as oxidative stress, inflammation, pyroptosis, and autophagy, thereby alleviating retinal diseases. CONCLUSION This review summarizes a series of plant extracts and plant active compounds that can treat retinal diseases by preventing and treating blood‒retinal barrier damage and provides reference for the research of new drugs for treating retinal diseases.
Collapse
Affiliation(s)
- Yuan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Huan Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Mengjun Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Mei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
2
|
Caban M, Lewandowska U. Polyphenols and Posterior Segment Eye Diseases: Effects on Angiogenesis, Invasion, Migration and Epithelial-Mesenchymal Transition. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2012792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miłosz Caban
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Urszula Lewandowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
3
|
Gu Y, Liu W, Liu G, Li X, Lu P. Assessing the protective effects of cryptotanshinone on CoCl 2‑induced hypoxia in RPE cells. Mol Med Rep 2021; 24:739. [PMID: 34435647 PMCID: PMC8404095 DOI: 10.3892/mmr.2021.12379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/24/2021] [Indexed: 12/27/2022] Open
Abstract
The development of several retinal diseases is closely related to hypoxia. As a component of the Traditional Chinese medicine Salvia miltiorrhiza, the effects of cryptotanshinone (CT) on retinal cells under hypoxic conditions are not well understood. The aim of the present study was to explore how CT exerted its protective effects on retinal pigment epithelium (RPE) cells under hypoxic conditions induced by cobalt chloride (CoCl2). The effects of CT were investigated using a Cell Counting Kit-8 assay, Annexin V-FITC/PI staining, reverse transcription-quantitative PCR and western blotting in ARPE-19 cells. CT (10 and 20 µM) reduced the CoCl2-induced increase in vascular endothelial growth factor expression and hypoxia-inducible transcription factor-1α expression in ARPE-19 cells. Additionally, CT alleviated hypoxia-induced apoptosis by regulating Bcl-2 and Bax protein expression. CT treatment also reduced the increase in the mRNA levels of IL-6, IL-1β and TNF-α induced by CoCl2. In summary, CT may protect RPE cells against apoptosis and inflammation in CoCl2-induced hypoxia, and these results warrant further in vivo study into its value as a drug for treating hypoxic eye diseases.
Collapse
Affiliation(s)
- Yu Gu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Weiming Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Gaoqin Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xin Li
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
4
|
Liang T, Wei C, Lu S, Qin M, Qin G, Zhang Y, Zhong X, Zou X, Yang Y. Ginaton injection alleviates cisplatin-induced renal interstitial fibrosis in rats via inhibition of apoptosis through regulation of the p38MAPK/TGF-β1 and p38MAPK/HIF-1α pathways. Biomed Rep 2021; 14:38. [PMID: 33692901 PMCID: PMC7938297 DOI: 10.3892/br.2021.1414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/04/2021] [Indexed: 11/06/2022] Open
Abstract
Ginaton injection (Ginkgo biloba extract; GBE) has been reported to protect against cisplatin-induced acute renal failure in rats. In the present study, the effects and molecular mechanisms of GBE on cisplatin-induced renal interstitial fibrosis were evaluated using a rat model. The rats were intraperitoneally injected with cisplatin once on the first day and a subset of rats were treated with GBE or SB203580 (SB; a specific p38 MAPK inhibitor) daily from days 22 to 40. The levels of N-acetyl-β-D-Glucosaminidase (NAG) in the urine, and of urea nitrogen (BUN) and creatinine (Scr) in the blood were assessed. The damage and fibrosis of renal tissues were evaluated using hematoxylin and eosin staining, as well as Masson's trichrome staining, respectively. Apoptosis in renal tissues was detected using a TUNEL assay. The protein expression levels of α-smooth muscle actin (SMA), collagen 1 (Col I), Bax, Bcl-2, caspase-3/cleaved caspase-3, hypoxia-inducible factor-1α (HIF-1α), TGF-β1 and p38MAPK, as well as the mRNA levels of p38MAPK in renal tissues were investigated. The results showed that GBE markedly reduced the levels of urinary NAG, Scr and BUN, and renal expression of α-SMA and Col I levels were also reduced. Furthermore, GBE significantly reduced renal tissue injury and the relative area of renal interstitial fibrosis induced by cisplatin. GBE effectively reduced the apoptotic rate of renal tissues, the protein expression levels of Bax, cleaved caspase-3, phospho-p38MAPK, TGF-β1 and HIF-1α, as well as the mRNA expression levels of p38MAPK in renal tissues induced by cisplatin, whereas GBE significantly increased Bcl-2 protein expression. SB exhibited similar effects to GBE, although it was not as effective. In summary, the present study is the first to show that GBE significantly alleviated renal interstitial fibrosis following cisplatin-induced acute renal injury. The mechanisms by which GBE exhibited its effects were associated with the inhibition of apoptosis via downregulation of the p38MAPK/TGF-β1 and p38MAPK/HIF-1α signaling pathways.
Collapse
Affiliation(s)
- Taolin Liang
- Postgraduate Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chongying Wei
- Postgraduate Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Sisi Lu
- Postgraduate Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Mengyuan Qin
- Postgraduate Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Guiming Qin
- Postgraduate Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yansong Zhang
- Postgraduate Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaobin Zhong
- Regenerative Medicine Research Center of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaoqin Zou
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yufang Yang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
5
|
Zhou Y, Chen J, Li LH, Chen L. β-elemene down-regulates HIF-lα, VEGF and iNOS in human retinal pigment epithelial cells under high glucose conditions. Int J Ophthalmol 2020; 13:1887-1894. [PMID: 33344186 DOI: 10.18240/ijo.2020.12.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022] Open
Abstract
AIM To investigate the effects and mechanism of β-elemene on the expressions of hypoxia-inducible factor-1α (HIF-lα), vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS) in human retinal pigment epithelial (RPE) cells under high glucose conditions. METHODS ARPE-19 cell line was cultured under eight conditions: 1) low glucose (LG; 5.5 mmol/L); 2) high glucose (HG; 33 mmol/L); 3) high glucose with 20 µg/mL β-elemene (HG+20E); 4) high glucose with 40 µg/mL β-elemene (HG+40E); 5) high glucose with SB203590 [HG+SB203590, p38-mitogen-activated protein kinase (p38-MAPK) pathway inhibitor]; 6) high glucose with LY294002 [HG+LY294002, phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway inhibitor]; 7) high glucose with 40 µg/mL β-elemene and SB203590 (HG+40E+SB203590); and 8) high glucose with 40 µg/mL β-elemene and LY294002 (HG+40E+LY294002). Cells were treated in conditions 1-4 for 24 and 48h, while for 48h in conditions 5-8. Then mRNA and protein levels of HIF-1α, VEGF and iNOS in cells were measured by real-time polymerase chain reaction (qPCR), immunofluorescence and Western blotting, respectively. Furthermore, protein levels of total p38-MAPK, phosphorylated p38-MAPK (p38-MAPK-P), total Akt and phosphorylated Akt (Akt-P) in cells of conditions 2 and 4 which treated for 48h were measured by Western blotting. RESULTS The mRNA levels and protein levels of HIF-1α, VEGF and iNOS in cells were significantly reduced in conditions 3-8 when compared with those in condition 2 (P<0.05). These reductions were more obvious in conditions treated for 48h than in conditions treated for 24h. The protein levels of p38-MAPK-P and Akt-P in cells of condition 4 were significantly lower than in condition 2 (P<0.01). CONCLUSION β-elemene down-regulates HIF-1α, VEGF and iNOS in ARPE-19 cells under a high glucose condition. The inhibitory effect of β-elemene is more significant when its concentration and treatment time are increased, as well as it is combined with SB203590 or LY294002 treatment. P38-MAPK and PI3K/Akt signaling pathways may play a role in this inhibitory effect.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Ophthalmology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Jun Chen
- Department of Ophthalmology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Hua Li
- Department of Ophthalmology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Lei Chen
- Department of Ophthalmology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
6
|
Hu WH, Chan GKL, Duan R, Wang HY, Kong XP, Dong TTX, Tsim KWK. Synergy of Ginkgetin and Resveratrol in Suppressing VEGF-Induced Angiogenesis: A Therapy in Treating Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11121828. [PMID: 31757048 PMCID: PMC6966653 DOI: 10.3390/cancers11121828] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022] Open
Abstract
Ginkgetin, a biflavone from Ginkgo biloba leaf, and resveratrol, a polyphenol found in grape and wine, are two phytochemicals being identified for its binding to vascular endothelial growth factor (VEGF): the binding, therefore, resulted in the alteration of the physiological roles of VEGF-mediated angiogenesis. The bindings of ginkgetin and resveratrol were proposed on different sites of VEGF, but both of them suppressed the angiogenic properties of VEGF. The suppressive activities of ginkgetin and resveratrol in VEGF-mediated angiogenesis were supported by several lines of evidence including (i) inhibiting the formation of sub-intestinal vessel in zebrafish embryos and microvascular sprouting in rat aortic ring; and (ii) suppressing the phosphorylations of VEGFR2, Akt, eNOS, and Erk as well as expressions of matrix metalloproteinases (MMPs), MMP-2, and MMP-9 in human umbilical vein endothelial cells (HUVECs). Here, we showed the synergy of ginkgetin and resveratrol in suppressing the VEGF-induced endothelial cell proliferation, migration, invasion, and tube formation. The synergy of ginkgetin and resveratrol was further illustrated in HT-29 colon cancer xenograft nude mice. Ginkgetin and resveratrol, when applied together, exerted a synergistic anti-tumor effect of 5-fluorouracil with decreasing microvessel density of tumors. In parallel, the combination of ginkgetin and resveratrol synergistically relieved the 5-fluorouracil-induced inflammatory response by suppressing expressions of COX-2 and inflammatory cytokines. Thus, the anti-angiogenic roles of ginkgetin and/or resveratrol could provide effective therapeutic strategy in cancer, similar to that of Avastin, in suppressing the VEGF-mediated angiogenesis during cancer development.
Collapse
Affiliation(s)
- Wei-Hui Hu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China; (W.-H.H.); (G.K.-L.C.); (R.D.); (H.-Y.W.); (X.-P.K.); (T.T.-X.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong 999077, China
| | - Gallant Kar-Lun Chan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China; (W.-H.H.); (G.K.-L.C.); (R.D.); (H.-Y.W.); (X.-P.K.); (T.T.-X.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong 999077, China
| | - Ran Duan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China; (W.-H.H.); (G.K.-L.C.); (R.D.); (H.-Y.W.); (X.-P.K.); (T.T.-X.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong 999077, China
| | - Huai-You Wang
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China; (W.-H.H.); (G.K.-L.C.); (R.D.); (H.-Y.W.); (X.-P.K.); (T.T.-X.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong 999077, China
| | - Xiang-Peng Kong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China; (W.-H.H.); (G.K.-L.C.); (R.D.); (H.-Y.W.); (X.-P.K.); (T.T.-X.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong 999077, China
| | - Tina Ting-Xia Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China; (W.-H.H.); (G.K.-L.C.); (R.D.); (H.-Y.W.); (X.-P.K.); (T.T.-X.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong 999077, China
| | - Karl Wah-Keung Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China; (W.-H.H.); (G.K.-L.C.); (R.D.); (H.-Y.W.); (X.-P.K.); (T.T.-X.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong 999077, China
- Correspondence: ; Tel.: +852-2358-7332; Fax: +852-2358-1552
| |
Collapse
|
7
|
Wang S, Li D, Pi J, Li W, Zhang B, Qi D, Li N, Guo P, Liu Z. Pharmacokinetic and ocular microdialysis study of oral ginkgo biloba extract in rabbits by UPLC-MS/MS determination. J Pharm Pharmacol 2017; 69:1540-1551. [DOI: 10.1111/jphp.12791] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 07/01/2017] [Indexed: 11/29/2022]
Abstract
Abstract
Objectives
The purpose of this work was to determine and investigate the absorption of ginkgo terpenoids (GT) in plasma and aqueous humour after oral administration of ginkgo biloba extract (GBE) by UPLC-MS/MS method.
Methods
The UPLC-MS/MS determination of GT employed the multiple reaction monitoring mode using an electrospray negative ionization. The rabbits were orally administered the suspension of GBE at a dose of 500 mg/kg. Serial plasma and dialysate samples were collected at the corresponding time and then analysed by UPLC-MS/MS.
Key findings
In plasma, the mean AUC from 0 to 48 h was 14.12, 12.59, 23.75, 1.51 h μg/ml for GLJ and 5.34 h μg/ml for GLA, GLB, GLC, GLJ and BLL, respectively. In aqueous humour, the five ginkgo terpenoids have been detected. Compared with the other four GT, BLL has better absorption in the eyes.
Conclusions
A selective and reproducible UPLC-MS/MS method was developed and validated to determine and investigate the absorption of ginkgo terpenoids in plasma and aqueous humour of rabbits after oral administration of GBE. The main five ginkgo terpenoids could be absorbed into eyes.
Collapse
Affiliation(s)
- Shuya Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ding Li
- Sine Promod Pharmaceutical Co., Shanghai, China
| | - Jiaxin Pi
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wen Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bing Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dongli Qi
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nan Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Pan Guo
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhidong Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Behl T, Kotwani A. Chinese herbal drugs for the treatment of diabetic retinopathy. J Pharm Pharmacol 2017; 69:223-235. [DOI: 10.1111/jphp.12683] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/26/2016] [Indexed: 12/31/2022]
Abstract
Abstract
Objectives
To explore the various pharmacological actions and the molecular mechanisms behind them by which Chinese herbs tend to lower the risk of developing microvascular diabetic complications in retina and prevent its further progression.
Key findings
Several Chinese herbs, indeed, elicit potent anti-inflammatory, antioxidant, anti-angiogenic, anti-apoptotic, peroxisome proliferator-activated receptor-gamma receptor agonistic, platelet-activating factor antagonistic, aldose reductase inhibitory and various other beneficial pharmacological activities, required to counteract the pathological conditions prevalent in retina during diabetes.
Summary
Chinese herbs can potentially be used for the treatment/prevention of diabetic retinopathy owing to the virtue of numerous properties by which they alleviate several hyperglycaemia-induced pathological occurrences in retina. This would provide a natural and safe therapy for diabetic retinopathy, which currently is clinically limited to destructive techniques like laser photocoagulation and vitrectomy.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Anita Kotwani
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| |
Collapse
|
9
|
Wang Y, Huang F, Zhao L, Zhang D, Wang O, Guo X, Lu F, Yang X, Ji B, Deng Q. Protective Effect of Total Flavones from Hippophae rhamnoides L. against Visible Light-Induced Retinal Degeneration in Pigmented Rabbits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:161-170. [PMID: 26653970 DOI: 10.1021/acs.jafc.5b04874] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Sea buckthorn (Hippophae rhamnoides L.) flavones have been used as candidate functional food ingredients because of their bioactivities, such as treating cardiovascular disorders, lowering plasma cholesterol level, and regulating immune function. However, the protective effects of sea buckthorn flavones against retinal degeneration remain unclear to date. This study investigated the protective effects of total flavones from H. rhamnoides (TFH) against visible light-induced retinal damage and explored the related mechanisms in pigmented rabbits. Rabbits were treated with TFH (250 and 500 mg/kg) for 2 weeks pre-illumination and 1 week post-illumination until sacrifice. Retinal function was quantified by performing electroretinography 1 day before and 1, 3, and 7 days after light exposure (18000 lx for 2 h). Retinal degeneration was evaluated by measuring the thickness of the outer nuclear layer (ONL) and performing the TUNEL assay 7 days after light exposure. Enzyme-linked immunosorbent assay, Western blot analysis, and immunohistochemistry were used to explore the antioxidant, anti-inflammatory, and anti-apoptotic mechanisms of TFH during visible light-induced retinal degeneration. Light exposure produced a degenerative effect primarily on the ONL, inner nuclear layer (INL), and ganglion cell layer (GCL). TFH significantly attenuated the destruction of electroretinograms caused by light damage, maintained ONL thickness, and decreased the number of TUNEL-positive cells in the INL and GCL. TFH ameliorated the retinal oxidative stress (GSH-Px, CAT, T-AOC, and MDA), inflammation (IL-1β and IL-6), angiogenesis (VEGF), and apoptosis (Bax, Bcl2, and caspase-3) induced by light exposure. Therefore, TFH exhibited protective effects against light-induced retinal degeneration by increasing the antioxidant defense mechanisms, suppressing pro-inflammatory and angiogenic cytokines, and inhibiting retinal cell apoptosis.
Collapse
Affiliation(s)
- Yong Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University , Beijing 100083, People's Republic of China
| | - Fenghong Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062, People's Republic of China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition , Wuhan 430062, People's Republic of China
| | - Liang Zhao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University , Beijing 100083, People's Republic of China
| | - Di Zhang
- School of Food and Biological Engineering, Jiangsu University , Zhenjiang 212013, People's Republic of China
| | - Ou Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University , Beijing 100083, People's Republic of China
| | - Xiaoxuan Guo
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University , Beijing 100083, People's Republic of China
| | - Feng Lu
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University , Beijing 100083, People's Republic of China
| | - Xue Yang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University , Beijing 100083, People's Republic of China
| | - Baoping Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University , Beijing 100083, People's Republic of China
| | - Qianchun Deng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences , Wuhan 430062, People's Republic of China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition , Wuhan 430062, People's Republic of China
| |
Collapse
|
10
|
Alivand MR, Sabouni F, Soheili ZS. Probable Chemical Hypoxia Effects on Progress of CNV Through Induction of Promoter CpG Demethylation and Overexpression of IL17RC in Human RPE Cells. Curr Eye Res 2016; 41:1245-54. [DOI: 10.3109/02713683.2015.1095933] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mohammad Reza Alivand
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Medical Genetic, Medical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Sabouni
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zahra-Soheila Soheili
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
11
|
Anand A, Modgil S, Sharma VL, Shri R, Kaushik S. Preserving neural retina through re-emerging herbal interventions. J Cell Biochem 2015; 115:1659-68. [PMID: 24819477 DOI: 10.1002/jcb.24840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 05/08/2014] [Indexed: 01/19/2023]
Abstract
Eye related diseases such as glaucoma, diabetic retinopathy, cataract, conjunctivitis are very common worldwide. With the current scenario India will be among the top five countries in the number of glaucoma cases. Limited discovery of successful drugs for the treatment of such diseases led scientists to look towards the use of conventional sources for treatment. Herbal extracts from Ayurveda have remained an important part of treatment regime in many parts of world even today. For this reason, local herbs possessing curative properties are still being used by local inhabitants due to its anti-inflammatory and antioxidant properties. Because retinal damage involves alterations in oxidative enzymes, blood flow changes and increase in apoptotic signals, herbal extracts are being tested for their ability to moderate antioxidant machinery and trigger neuroprotective pathways. The present review summarizes some of such herbal extracts which have been tested for their neuroprotective role in eye related diseases. The active components that exert neuroprotective effects have also been discussed along with possible mechanisms of action.
Collapse
Affiliation(s)
- Akshay Anand
- Department of Neurology, Neuroscience Research Lab, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | | | | | | | | |
Collapse
|
12
|
Paeng SH, Jung WK, Park WS, Lee DS, Kim GY, Choi YH, Seo SK, Jang WH, Choi JS, Lee YM, Park S, Choi IW. Caffeic acid phenethyl ester reduces the secretion of vascular endothelial growth factor through the inhibition of the ROS, PI3K and HIF-1α signaling pathways in human retinal pigment epithelial cells under hypoxic conditions. Int J Mol Med 2015; 35:1419-26. [PMID: 25738890 DOI: 10.3892/ijmm.2015.2116] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/24/2015] [Indexed: 11/06/2022] Open
Abstract
Choroidal neovascularization (CNV) can lead to progressive and severe visual loss. Vascular endothelial growth factor (VEGF) promotes the development of CNV. Caffeic acid phenethyl ester (CAPE), a biologically active component of the honeybee (Apis mellifera) propolis, has been demonstrated to have several interesting biological regulatory properties. The objective of this study was to determine whether treatment with CAPE results in the inhibition of the production of vascular endothelial growth factor (VEGF) in retinal pigment epithelial cells (RPE cells) under hypoxic conditions and to explore the possible underlying mechanisms. An in vitro experimental model of hypoxia was used to mimic an ischemic microenvironment for the RPE cells. Human RPE cells (ARPE-19) were exposed to hypoxia with or without CAPE pre-treatment. ARPE-19 cells were used to investigate the pathway involved in the regulation of VEGF production under hypoxic conditions, based on western blot analysis, enzyme-linked immunosorbent assay (ELISA) and electrophoretic mobility shift assay (EMSA). The amount of VEGF released from the hypoxia-exposed cells was significantly higher than that of the normoxic controls. Pre-treatment with CAPE suppressed the hypoxia-induced production of VEGF in the ARPE-19 cells, and this effect was inhibited through the attenuation of reactive oxygen species (ROS) production, and the inhibition of phosphoinositide 3-kinase (PI3K)/AKT and hypoxia-inducible factor-1α (HIF-1α) expression. These in vitro findings suggest that CAPE may prove to be a novel anti-angiogenic agent for the treatment of diseases associated with CNV.
Collapse
Affiliation(s)
- Sung Hwa Paeng
- Department of Neurosurgery, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Gangwon, Republic of Korea
| | - Dae-Sung Lee
- Marine Biodiversity Institute of Korea, Seocheon, Chungcheongnam-do, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan, Republic of Korea
| | - Su-Kil Seo
- Department of Microbiology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Won Hee Jang
- Department of Biochemistry, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Jung Sik Choi
- Department of Internal Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Young-Min Lee
- Department of Internal Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Saegwang Park
- Department of Microbiology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
13
|
Zeaxanthin inhibits hypoxia-induced VEGF secretion by RPE cells through decreased protein levels of hypoxia-inducible factors-1α. BIOMED RESEARCH INTERNATIONAL 2015; 2015:687386. [PMID: 25688362 PMCID: PMC4320873 DOI: 10.1155/2015/687386] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/15/2014] [Indexed: 01/10/2023]
Abstract
Hypoxia is the most important stimulus leading to upregulation of VEGF in the retina and this is caused by accumulation of hypoxia-inducible factors-1α (HIF-1α) protein. The effects of zeaxanthin, a natural phytochemical, on the VEGF and HIF-1α expression in the primary culture of human retinal pigment epithelial (RPE) cells were studied. An in vitro RPE cell hypoxia model was established by placing cells under 1% oxygen pressure or by adding cobalt chloride (CoCl2) to the culture medium. RPE cells and conditioned media were collected from cultures treated with and without zeaxanthin under normoxic and hypoxic conditions. VEGF and HIF-1α protein and RNA levels were measured by ELISA kits and RT-PCR, respectively. Hypoxia caused a significant increase of VEGF expression and accumulation of HIF-1α in RPE cells. Zeaxanthin at 50-150 μM significantly inhibited the expression of VEGF and accumulation of HIF-1α protein caused by hypoxia but did not affect expression of VEGF and HIF-1α under normoxic conditions. This is the first report on the effect of zeaxanthin on VEGF and HIF-1α levels in cultured RPE cells and suggests that zeaxanthin may have potential value in the prevention and treatment of various retinal diseases associated with vascular leakage and neovascularization.
Collapse
|
14
|
Ritonavir inhibits HIF-1α-mediated VEGF expression in retinal pigment epithelial cells in vitro. Eye (Lond) 2013; 28:93-101. [PMID: 24202050 DOI: 10.1038/eye.2013.240] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 09/25/2013] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Retinal hypoxia-mediated activation of the hypoxia-inducible factor (HIF pathway) leading to angiogenesis is a major signaling mechanism underlying a number of sight-threatening diseases. Inhibiting this signaling mechanism with an already approved therapeutic molecule may have promising anti-angiogenic role with fewer side effects. Hence, the primary objective of this study was to examine the expression of HIF-1α and VEGF in human retinal pigment epithelial cells treated with ritonavir under hypoxic and normoxic conditions. METHODS ARPE-19 and D407 cells were cultured in normoxic or hypoxic conditions, alone or in the presence of ritonavir. Quantitative real-time polymerase chain reaction, immunoblot analysis, sandwich ELISA, endothelial cell proliferation, and cytotoxicity were performed. RESULTS A 12-h hypoxic exposure resulted in elevated mRNA expression levels of both HIF-1α and VEGF in ARPE-19 and D407 cells. Hence, this time point was selected for subsequent experiments. Presence of ritonavir in the culture medium strongly inhibited VEGF expression in a concentration-dependent manner under hypoxic conditions. Immunoblot analysis demonstrated a substantially reduced protein expression of HIF-1α in the presence of ritonavir. Further, hypoxic exposure-induced VEGF secretion was also inhibited by ritonavir, as demonstrated using ELISA. Finally, ritonavir significantly diminished the proliferation of choroid-retinal endothelial (RF/6A) cells demonstrating potential anti-angiogenic activity. Cytotoxicity studies showed that ritonavir is non-toxic to RPE cells. CONCLUSIONS This study demonstrates for the first time that ritonavir can inhibit HIF-1α and VEGF in ARPE-19 and D407 cells. Such inhibition may form a platform for application of ritonavir in the treatment of various ocular diseases.
Collapse
|