1
|
Sharif NA. Discovery to Launch of Anti-allergy (Emadine; Patanol/Pataday/Pazeo) and Anti-glaucoma (Travatan; Simbrinza) Ocular Drugs, and Generation of Novel Pharmacological Tools Such as AL-8810. ACS Pharmacol Transl Sci 2020; 3:1391-1421. [PMID: 33344909 DOI: 10.1021/acsptsci.0c00137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 02/07/2023]
Abstract
The eye and eyesight are exquistly designed and are precious, and yet we often take them for granted. Good vision is critical for our long-term survival and for humanity's enduring progress. Unfortunately, since ocular diseases do not culminate in life-and-death scenarios, awareness of the plight of millions of people suffering from such eye ailments is not publicized as other diseases. However, losing eyesight or falling victim to visual impairment is a frightening outlook for most people. Glaucoma, a collection of chronic optic neuropathies, of which the most prevalent form, primary open-angle glaucoma (POAG), is the second leading cause of irreversible blindness. POAG currently afflicts >70 million people worldwide and is an insidious, progressive, silent thief of sight that is asymptomatic. On the other hand, allergic conjunctivitis (AC), and the associated rhinitis ("hay-fever"), frequently victimizes a huge number of people worldwide, especially during seasonal changes. While not life-threatening, sufferers of AC soon learn the value of drugs to treat their signs and symptoms of AC as they desire rapid relief to overcome the ocular itching/pain, redness, and tearing AC causes. Herein, I will describe the collective efforts of many researchers whose industrious, diligent, and dedicated team work resulted in the discovery, biochemical/pharmacological characterization, development and eventual launch of drugs to treat AC (e.g., olopatadine [Patanol/Pataday/Pazeo] and emedastine [Emedine]), and for treating ocular hypertension and POAG (e.g., travoprost [Travatan ] and Simbrinza). This represents a personal perspective.
Collapse
Affiliation(s)
- Najam A Sharif
- Department of Pharmacology & Neuroscience University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| |
Collapse
|
2
|
Lyu M, Zhou J, Chen H, Bai H, Song J, Liu T, Cheng Y, Ying B. The genetic variants in calcium signaling related genes influence anti-tuberculosis drug induced liver injury: A prospective study. Medicine (Baltimore) 2019; 98:e17821. [PMID: 31689868 PMCID: PMC6946452 DOI: 10.1097/md.0000000000017821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although many genetic variants related to anti-tuberculosis drug induced liver injury (ATDILI) have been identified, the prediction and personalized treatment of ATDILI have failed to achieve, indicating there remains an area for further exploration. This study aimed to explore the influence of single nucleotide polymorphisms (SNPs) in Bradykinin receptor B2 (BDKRB2), Teneurin transmembrane protein 2 (TENM2), transforming growth factor beta 2 (TGFB2), and solute carrier family 2 member 13 (SLC2A13) on the risk of ATDILI.The subjects comprised 746 Chinese tuberculosis (TB) patients. Custom-by-design 2x48-Plex SNPscanTM kit was employed to genotype 28 selected SNPs. The associations of SNPs with ATDILI risk and clinical phenotypes were analyzed according to the distributions of allelic and genotypic frequencies and different genetic models. The odds ratio (OR) with corresponding 95% confidence interval (CI) was calculated.Among subjects with successfully genotyped, 107 participants suffered from ATDILI during follow-up. In BDKRB2, patients with rs79280755 G allele or rs117806152 C allele were more vulnerable to ATDILI (PBonferronicorrection = .002 and .03, respectively). Rs79280755 increased the risk of ATDILI significantly whether in additive (OR = 3.218, 95% CI: 1.686-6.139, PBonferroni correction = .003) or dominant model (PBonferroni correction = .003), as well as rs117806152 (Additive model: PBonferroni correction = .05; dominant model: PBonferroni correction = .03). For TENM2, rs80003210 G allele contributed to the decreased risk of ATDILI (PBonferroni correction = .02), while rs2617972 A allele conferred susceptibility to ATDILI (PBonferroni correction = .01). Regarding rs2617972, significant findings were also observed in both additive (OR = 3.203, 95% CI: 1.487-6.896, PBonferroni correction = .02) and dominant model (PBonferroni correction = .02). Moreover, rs79280755 and rs117806152 in BDKRB2 significantly affected some laboratory indicators. However, no meaningful SNPs were observed in TGFB2 and SLC2A13.Our study revealed that both BDKRB2 and TENM2 genetic polymorphisms were interrogated in relation to ATDILI susceptibility and some laboratory indicators in the Western Chinese Han population, shedding a new light on exploring novel biomarkers and targets for ATDILI.
Collapse
Affiliation(s)
- Mengyuan Lyu
- Department of Laboratory Medicine, West China Hospital
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jian Zhou
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Hao Chen
- Department of Laboratory Medicine, West China Hospital
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Hao Bai
- Department of Laboratory Medicine, West China Hospital
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jiajia Song
- Department of Laboratory Medicine, West China Hospital
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Tangyuheng Liu
- Department of Laboratory Medicine, West China Hospital
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yuhui Cheng
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Sharif NA. iDrugs and iDevices Discovery Research: Preclinical Assays, Techniques, and Animal Model Studies for Ocular Hypotensives and Neuroprotectants. J Ocul Pharmacol Ther 2018; 34:7-39. [PMID: 29323613 DOI: 10.1089/jop.2017.0125] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Discovery ophthalmic research is centered around delineating the molecular and cellular basis of ocular diseases and finding and exploiting molecular and genetic pathways associated with them. From such studies it is possible to determine suitable intervention points to address the disease process and hopefully to discover therapeutics to treat them. An investigational new drug (IND) filing for a new small-molecule drug, peptide, antibody, genetic treatment, or a device with global health authorities requires a number of preclinical studies to provide necessary safety and efficacy data. Specific regulatory elements needed for such IND-enabling studies are beyond the scope of this article. However, to enhance the overall data packages for such entities and permit high-quality foundation-building publications for medical affairs, additional research and development studies are always desirable. This review aims to provide examples of some target localization/verification, ocular drug discovery processes, and mechanistic and portfolio-enhancing exploratory investigations for candidate drugs and devices for the treatment of ocular hypertension and glaucomatous optic neuropathy (neurodegeneration of retinal ganglion cells and their axons). Examples of compound screening assays, use of various technologies and techniques, deployment of animal models, and data obtained from such studies are also presented.
Collapse
Affiliation(s)
- Najam A Sharif
- 1 Global Alliances & External Research , Santen Incorporated, Emeryville, California.,2 Department of Pharmaceutical Sciences, Texas Southern University , Houston, Texas.,3 Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center , Fort Worth, Texas
| |
Collapse
|
4
|
Differential volume regulation and calcium signaling in two ciliary body cell types is subserved by TRPV4 channels. Proc Natl Acad Sci U S A 2016; 113:3885-90. [PMID: 27006502 DOI: 10.1073/pnas.1515895113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Fluid secretion by the ciliary body plays a critical and irreplaceable function in vertebrate vision by providing nutritive support to the cornea and lens, and by maintaining intraocular pressure. Here, we identify TRPV4 (transient receptor potential vanilloid isoform 4) channels as key osmosensors in nonpigmented epithelial (NPE) cells of the mouse ciliary body. Hypotonic swelling and the selective agonist GSK1016790A (EC50 ∼33 nM) induced sustained transmembrane cation currents and cytosolic [Formula: see text] elevations in dissociated and intact NPE cells. Swelling had no effect on [Formula: see text] levels in pigment epithelial (PE) cells, whereas depolarization evoked [Formula: see text] elevations in both NPE and PE cells. Swelling-evoked [Formula: see text] signals were inhibited by the TRPV4 antagonist HC067047 (IC50 ∼0.9 μM) and were absent in Trpv4(-/-) NPE. In NPE, but not PE, swelling-induced [Formula: see text] signals required phospholipase A2 activation. TRPV4 localization to NPE was confirmed with immunolocalization and excitation mapping approaches, whereas in vivo MRI analysis confirmed TRPV4-mediated signals in the intact mouse ciliary body. Trpv2 and Trpv4 were the most abundant vanilloid transcripts in CB. Overall, our results support a model whereby TRPV4 differentially regulates cell volume, lipid, and calcium signals in NPE and PE cell types and therefore represents a potential target for antiglaucoma medications.
Collapse
|
5
|
Sharif NA. Novel potential treatment modalities for ocular hypertension: focus on angiotensin and bradykinin system axes. J Ocul Pharmacol Ther 2015; 31:131-45. [PMID: 25599263 DOI: 10.1089/jop.2014.0114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite the availability of modern surgical procedures, new drug delivery techniques, health authority-approved single topical ocular drugs, and combination products thereof, there continues to be an unmet medical need for novel treatment modalities for preserving vision. This is especially true for the treatment of glaucoma and the high risk factor often associated with this ocular disease, elevated intraocular pressure (IOP). Undesirable local or systemic side effects, frequency of dosing, lack of sustained IOP lowering, and lack of prevention of diurnal IOP spikes are among the greatest challenges. The very recent discovery, characterization, and publication of 2 novel IOP-lowering agents that pertain to the renin-angiotensin and kallikrein-kinin axes potentially offer novel means to treat and control ocular hypertension (OHT). Here, some contextual introductory information is provided first, followed by more detailed discussion of the properties and actions of diminazene aceturate (DIZE; a novel angiotensin-converting enzyme-2 activator) and FR-190997 (a nonpeptide bradykinin receptor-2 agonist) in relation to their anti-OHT activities in rodent and cynomolgus monkey eyes, respectively. It is anticipated that these compounds will pave the way for future discovery, development, and marketing of novel drugs to treat glaucoma and thus help save sight for millions of people afflicted with this slow progressive optic neuropathy.
Collapse
Affiliation(s)
- Najam A Sharif
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| |
Collapse
|
6
|
Sharif NA, Li L, Katoli P, Xu S, Veltman J, Li B, Scott D, Wax M, Gallar J, Acosta C, Belmonte C. Preclinical pharmacology, ocular tolerability and ocular hypotensive efficacy of a novel non-peptide bradykinin mimetic small molecule. Exp Eye Res 2014; 128:170-80. [PMID: 25307520 DOI: 10.1016/j.exer.2014.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/17/2014] [Accepted: 10/07/2014] [Indexed: 02/04/2023]
Abstract
We sought to characterize the ocular pharmacology, tolerability and intraocular pressure (IOP)-lowering efficacy of FR-190997, a non-peptidic bradykinin (BK) B2-receptor agonist. FR-190997 possessed a relatively high receptor binding affinity (Ki = 27 nM) and a high in vitro potency (EC50 = 18.3 ± 4.4 nM) for inositol-1-phosphate generation via human cloned B2-receptors expressed in host cells with mimimal activity at B1-receptors. It also mobilized intracellular Ca2+ in isolated human trabecular meshwork (h-TM), ciliary muscle (h-CM), and in immortalized non-pigmented ciliary epithelial (h-iNPE) cells (EC50s = 167-384 nM; Emax = 32-86% of BK-induced response). HOE-140, a selective B2-receptor antagonist, potently blocked the latter effects of FR-190997 (e.g., IC50 = 7.3 ± 0.6 nM in h-CM cells). FR-190997 also stimulated the release of prostaglandins (PGs) from h-TM and h-CM cells (EC50s = 60-84 nM; Emax = 29-44% relative to max. BK-induced effects). FR-190997 (0.3-300 μg t.o.) did not activate cat corneal polymodal nociceptors and did not cause ocular discomfort in Dutch-Belted rabbits, but it was not well tolerated in New Zealand albino rabbits and Hartley guinea pigs. A single topical ocular (t.o.) dose of 1% FR-190997 in Dutch-Belted rabbits and mixed breed cats did not lower IOP. However, FR-190997 efficaciously lowered IOP of conscious ocular hypertensive cynomolgus monkey eyes (e.g., 34.5 ± 7.5% decrease; 6 h post-dose of 30 μg t.o.; n = 8). Thus, FR-190997 is an unexampled efficacious ocular hypotensive B2-receptor non-peptide BK agonist that activates multiple signaling pathways to cause IOP reduction.
Collapse
Affiliation(s)
- Najam A Sharif
- Alcon Research, Ltd (a Novartis Company), 6201 South Freeway, Fort Worth, TX 76134-2099, USA.
| | - Linya Li
- Alcon Research, Ltd (a Novartis Company), 6201 South Freeway, Fort Worth, TX 76134-2099, USA
| | - Parvaneh Katoli
- Alcon Research, Ltd (a Novartis Company), 6201 South Freeway, Fort Worth, TX 76134-2099, USA
| | - Shouxi Xu
- Alcon Research, Ltd (a Novartis Company), 6201 South Freeway, Fort Worth, TX 76134-2099, USA
| | - James Veltman
- Alcon Research, Ltd (a Novartis Company), 6201 South Freeway, Fort Worth, TX 76134-2099, USA
| | - Byron Li
- Alcon Research, Ltd (a Novartis Company), 6201 South Freeway, Fort Worth, TX 76134-2099, USA
| | - Daniel Scott
- Alcon Research, Ltd (a Novartis Company), 6201 South Freeway, Fort Worth, TX 76134-2099, USA
| | - Martin Wax
- Alcon Research, Ltd (a Novartis Company), 6201 South Freeway, Fort Worth, TX 76134-2099, USA
| | - Juana Gallar
- Institute of Neuroscience, University Miguel Hernandez-CSIC, San Juan Campus, Alicante, Spain
| | - Carmen Acosta
- Institute of Neuroscience, University Miguel Hernandez-CSIC, San Juan Campus, Alicante, Spain
| | - Carlos Belmonte
- Institute of Neuroscience, University Miguel Hernandez-CSIC, San Juan Campus, Alicante, Spain
| |
Collapse
|
7
|
Sharif NA, Katoli P, Scott D, Li L, Kelly C, Xu S, Husain S, Toris C, Crosson C. FR-190997, a nonpeptide bradykinin B2-receptor partial agonist, is a potent and efficacious intraocular pressure lowering agent in ocular hypertensive cynomolgus monkeys. Drug Dev Res 2014; 75:211-23. [PMID: 24796320 DOI: 10.1002/ddr.21174] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/13/2014] [Indexed: 12/20/2022]
Abstract
Preclinical Research FR-190997 (8-[2,6-dichloro-3-[N-[(E)-4-(N-methylcarbamoyl) cinnaminoacetyl]-N-methylamino]benzyloxy]-2-methyl-4- (2-pyridylmethoxy) quinoline), a nonpeptide bradykinin (BK) B2-receptor-selective agonist, represents a novel class of ocular hypotensive agents. FR-190997 exhibited a high affinity for the human cloned B2-receptor (Ki = 9.8 nM) and a relatively high potency (EC50 = 155 nM) for mobilizing intracellular Ca(2+) ([Ca(2+)]i) in human ocular cells from nonpigmented ciliary epithelium; trabecular meshwork [h-TM]; ciliary muscle [h-CM] that are involved in regulating intraocular pressure (IOP). Unlike BK, FR-190997 behaved as a partial agonist (Emax = 38-80%) in these cells and its [Ca(2+)]i-mobilizing effects were blocked by the B2-receptor-selective antagonists (HOE-140, Ki = 0.8-7 nM; WIN-64338, Ki = 157-425 nM). FR-190997 stimulated the production of prostaglandins (PGs) in h-CM and h-TM cells (EC50 = 15-19 nM; Emax = 27-33%); an effect that was reduced by the cyclooxygenase-2 inhibitor bromfenac, and by HOE-140. FR-190997 also induced pro-matrix metalloproteinase (MMP)-1 and MMP-3 release from h-CM cells. FR-190997 significantly lowered IOP (37% [P < 0.001] with 30 μg, 24 h post-topical ocular dosing) in ocular hypertensive eyes of conscious Cynomolgus monkeys. This effect was reduced by bromfenac and completely blocked by a B2-antagonist. FR-190997 primarily stimulated uveoslceral outflow (UVSO) of aqueous humor (2.6 to 3.9-fold above baseline). In conclusion, FR-190997 is a B2-receptor selective partial agonist that activates phospholipase C, mobilizes [Ca(2+)]; induces PG and pro-MMP production, and that profoundly lowers IOP by promoting UVSO in ocular hypertensive Cynomolgus monkey eyes.
Collapse
Affiliation(s)
- Najam A Sharif
- Pharmaceutical Research, Alcon Research, Ltd (A Novartis Company), Fort Worth, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|