1
|
Mesenchymal stromal cells for corneal transplantation: Literature review and suggestions for successful clinical trials. Ocul Surf 2021; 20:185-194. [PMID: 33607323 PMCID: PMC9878990 DOI: 10.1016/j.jtos.2021.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 01/28/2023]
Abstract
Corneal transplantation is a routine procedure for patients with corneal blindness. Despite the streamlining of surgical techniques and deeper understanding of the cellular and molecular pathways mediating rejection, corticosteroids are still the main immunosuppressive regimen in corneal transplantation, and the 15-year survival of corneal transplants remains as low as 50%, which is poorer than that for most solid organ transplants. Recently, mesenchymal stromal cells (MSCs) with unique regenerative and immune-modulating properties have emerged as a promising cell therapy to promote transplant tolerance, minimize the use of immunosuppressants, and prevent chronic rejection. Here, we review the literature on preclinical studies of MSCs for corneal transplantation and summarize the key findings from clinical trials with MSCs in solid organ transplantation. Finally, we highlight current issues and challenges regarding MSC therapies and suggest strategies for safe and effective MSC-based therapies in clinical transplantation.
Collapse
|
2
|
Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal Stem Cells for Regenerative Medicine. Cells 2019; 8:E886. [PMID: 31412678 PMCID: PMC6721852 DOI: 10.3390/cells8080886] [Citation(s) in RCA: 634] [Impact Index Per Article: 126.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
In recent decades, the biomedical applications of mesenchymal stem cells (MSCs) have attracted increasing attention. MSCs are easily extracted from the bone marrow, fat, and synovium, and differentiate into various cell lineages according to the requirements of specific biomedical applications. As MSCs do not express significant histocompatibility complexes and immune stimulating molecules, they are not detected by immune surveillance and do not lead to graft rejection after transplantation. These properties make them competent biomedical candidates, especially in tissue engineering. We present a brief overview of MSC extraction methods and subsequent potential for differentiation, and a comprehensive overview of their preclinical and clinical applications in regenerative medicine, and discuss future challenges.
Collapse
Affiliation(s)
- Yu Han
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Xuezhou Li
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Yanbo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China.
| | - Yuping Han
- Department of Urology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China.
| | - Fei Chang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
3
|
Nwabo Kamdje AH, Kamga PT, Simo RT, Vecchio L, Seke Etet PF, Muller JM, Bassi G, Lukong E, Goel RK, Amvene JM, Krampera M. Mesenchymal stromal cells' role in tumor microenvironment: involvement of signaling pathways. Cancer Biol Med 2017; 14:129-141. [PMID: 28607804 PMCID: PMC5444925 DOI: 10.20892/j.issn.2095-3941.2016.0033] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are adult multipotent stem cells residing as pericytes in various tissues and organs where they can differentiate into specialized cells to replace dying cells and damaged tissues. These cells are commonly found at injury sites and in tumors that are known to behave like " wounds that do not heal." In this article, we discuss the mechanisms of MSCs in migrating, homing, and repairing injured tissues. We also review a number of reports showing that tumor microenvironment triggers plasticity mechanisms in MSCs to induce malignant neoplastic tissue formation, maintenance, and chemoresistance, as well as tumor growth. The antitumor properties and therapeutic potential of MSCs are also discussed.
Collapse
Affiliation(s)
| | - Paul Takam Kamga
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Richard Tagne Simo
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Lorella Vecchio
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | | | - Jean Marc Muller
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Giulio Bassi
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Erique Lukong
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Raghuveera Kumar Goel
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Jeremie Mbo Amvene
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Mauro Krampera
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| |
Collapse
|
4
|
Mouse mesenchymal stem cells inhibit high endothelial cell activation and lymphocyte homing to lymph nodes by releasing TIMP-1. Leukemia 2016; 30:1143-54. [PMID: 26898191 PMCID: PMC4858586 DOI: 10.1038/leu.2016.33] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/02/2015] [Accepted: 02/01/2016] [Indexed: 12/31/2022]
Abstract
Mesenchymal stem cells (MSC) represent a promising therapeutic approach in many diseases in view of their potent immunomodulatory properties, which are only partially understood. Here, we show that the endothelium is a specific and key target of MSC during immunity and inflammation. In mice, MSC inhibit activation and proliferation of endothelial cells in remote inflamed lymph nodes (LNs), affect elongation and arborization of high endothelial venules (HEVs) and inhibit T-cell homing. The proteomic analysis of the MSC secretome identified the tissue inhibitor of metalloproteinase-1 (TIMP-1) as a potential effector molecule responsible for the anti-angiogenic properties of MSC. Both in vitro and in vivo, TIMP-1 activity is responsible for the anti-angiogenic effects of MSC, and increasing TIMP-1 concentrations delivered by an Adeno Associated Virus (AAV) vector recapitulates the effects of MSC transplantation on draining LNs. Thus, this study discovers a new and highly efficient general mechanism through which MSC tune down immunity and inflammation, identifies TIMP-1 as a novel biomarker of MSC-based therapy and opens the gate to new therapeutic approaches of inflammatory diseases.
Collapse
|
5
|
Treacy O, Fahy G, Ritter T, O'Flynn L. Corneal Immunosuppressive Mechanisms, Anterior Chamber-Associated Immune Deviation (ACAID) and Their Role in Allograft Rejection. Methods Mol Biol 2016; 1371:205-14. [PMID: 26530803 DOI: 10.1007/978-1-4939-3139-2_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Corneal transplantation is the most frequently performed transplant procedure in humans. Human leukocyte antigen matching, while imperative for other types of organ transplants, is usually not performed before cornea transplantation. With the use of topical steroid immunosuppressants, which are subsequently tailed off to almost zero, most corneal transplants will not be rejected in recipients with low risk of graft rejection. This phenomenon has been described as immune privilege by Medawar many years ago. However, this immune privilege is relative and can be easily eroded, e.g. by postoperative nonspecific inflammation or other causes of corneal or ocular inflammation. Interestingly, corneas that are at high risk of rejection have a higher failure rate than other organs. Considerable progress has been made in recent years to provide a better understanding of corneal immune privilege. This chapter will review current knowledge on ocular immunosuppressive mechanisms including anterior chamber-associated immune deviation and discuss their role(s) in corneal allograft rejection. Ultimately, this evolving information will be of benefit in developing therapeutic strategies to prevent corneal transplant rejection.
Collapse
Affiliation(s)
- Oliver Treacy
- College of Medicine, Nursing and Health Sciences, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Gerry Fahy
- Department of Ophthalmology, University Hospital Galway, National University of Ireland, Galway, Ireland
| | - Thomas Ritter
- College of Medicine, Nursing and Health Sciences, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland.
| | | |
Collapse
|
6
|
Human Bone Marrow-Derived Mesenchymal Stromal Cells Differentially Inhibit Cytokine Production by Peripheral Blood Monocytes Subpopulations and Myeloid Dendritic Cells. Stem Cells Int 2015; 2015:819084. [PMID: 26060498 PMCID: PMC4427776 DOI: 10.1155/2015/819084] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/05/2015] [Indexed: 12/17/2022] Open
Abstract
The immunosuppressive properties of mesenchymal stromal/stem cells (MSC) rendered them an attractive therapeutic approach for immune disorders and an increasing body of evidence demonstrated their clinical value. However, the influence of MSC on the function of specific immune cell populations, namely, monocyte subpopulations, is not well elucidated. Here, we investigated the influence of human bone marrow MSC on the cytokine and chemokine expression by peripheral blood classical, intermediate and nonclassical monocytes, and myeloid dendritic cells (mDC), stimulated with lipopolysaccharide plus interferon (IFN)γ. We found that MSC effectively inhibit tumor necrosis factor- (TNF-) α and macrophage inflammatory protein- (MIP-) 1β protein expression in monocytes and mDC, without suppressing CCR7 and CD83 protein expression. Interestingly, mDC exhibited the highest degree of inhibition, for both TNF-α and MIP-1β, whereas the reduction of TNF-α expression was less marked for nonclassical monocytes. Similarly, MSC decreased mRNA levels of interleukin- (IL-) 1β and IL-6 in classical monocytes, CCL3, CCL5, CXCL9, and CXCL10 in classical and nonclassical monocytes, and IL-1β and CXCL10 in mDC. MSC do not impair the expression of maturation markers in monocytes and mDC under our experimental conditions; nevertheless, they hamper the proinflammatory function of monocytes and mDC, which may impede the development of inflammatory immune responses.
Collapse
|
7
|
Crnej A, Omoto M, Dohlman TH, Dohlman CH, Dana R. Corneal inflammation after miniature keratoprosthesis implantation. Invest Ophthalmol Vis Sci 2014; 56:185-9. [PMID: 25515579 DOI: 10.1167/iovs.14-15884] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To compare corneal inflammation after syngeneic and allogeneic penetrating keratoplasty (PK) with miniature Keratoprosthesis (m-KPro) implantation in mice. METHODS BALB/C (syngeneic) or C57BL/6 (allogeneic) corneas were transplanted onto BALB/C host beds as part of PK or m-KPro implantation. Corneal inflammation was assessed by determining the frequencies of CD45(+) leukocytes, CD4(+) T cells, CD11b(+) cells, and Gr-1(+) granulocytes/monocytes by flow cytometry at 2, 4, and 8 weeks post transplantation. In addition, expression levels of the proinflammatory cytokines TNF-α and IL-1β were analyzed using real-time qPCR at 8 weeks post transplantation. RESULTS Cell frequencies in the syngeneic (syn) and allogeneic (allo) m-KPro groups were higher compared with the syngeneic and allogeneic PK groups, respectively, at all time points. However, after week 4, frequencies of all analyzed immune cells were higher in the alloPK group as compared with synKPro group. At 8 weeks, the expression of TNF-α was higher in synKPro, alloPK, and alloKPro groups compared with the naïve and synPK groups. The expression of IL-1β was significantly higher in both KPro groups as compared with PK groups. CONCLUSIONS Although the m-KPro device augments the inflammatory response in the cornea after its implantation, allogenicity (of the carrier tissue) is also a significant contributor to corneal inflammation. These data suggest that using syngeneic or decellularized corneal tissue as a Boston-KPro carrier could reduce the postoperative inflammation response.
Collapse
Affiliation(s)
- Alja Crnej
- Massachusetts Eye and Ear Infirmary and Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, United States
| | - Masahiro Omoto
- Massachusetts Eye and Ear Infirmary and Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, United States
| | - Thomas H Dohlman
- Massachusetts Eye and Ear Infirmary and Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, United States
| | - Claes H Dohlman
- Massachusetts Eye and Ear Infirmary and Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, United States
| | - Reza Dana
- Massachusetts Eye and Ear Infirmary and Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|