1
|
Suliński T, Nowak N, Szymański J, Pniewski J. Analysis of Deposition and Diffusion of Cholesterol in Silicone Hydrogel Contact Lenses Using Confocal Microscopy. Vision (Basel) 2024; 8:55. [PMID: 39311323 PMCID: PMC11417713 DOI: 10.3390/vision8030055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
In this study, we investigated lipid deposition and diffusion in silicone hydrogel (Si-Hy) contact lenses using confocal microscopy. Different Si-Hy lenses were analyzed to understand the interaction patterns of cholesterol with various lens materials. The results highlight significant differences in the deposition and diffusion of lipids through the lenses, revealing that some materials, such as comfilcon A, allow lipids to diffuse more freely compared to others, such as samfilcon A, which provides a greater barrier. The study also observed different morphology and movement of lipid agglomerates across the lenses and above it surfaces. These findings contribute to the understanding of lipid-lens interaction, which is important for the development of lenses with improved comfort and functionality. The research highlights the importance of considering lipid interactions in the design and selection of Si-Hy contact lenses to enhance wearer comfort and lens performance.
Collapse
Affiliation(s)
- Tomasz Suliński
- Alcon Polska, Marynarska 15, 02-674 Warsaw, Poland
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland;
| | - Natalia Nowak
- Nencki Institute of Experimental Biology PAS, Pasteura 3, 02-093 Warsaw, Poland; (N.N.)
| | - Jędrzej Szymański
- Nencki Institute of Experimental Biology PAS, Pasteura 3, 02-093 Warsaw, Poland; (N.N.)
| | - Jacek Pniewski
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland;
| |
Collapse
|
2
|
Jones L, Efron N, Bandamwar K, Barnett M, Jacobs DS, Jalbert I, Pult H, Rhee MK, Sheardown H, Shovlin JP, Stahl U, Stanila A, Tan J, Tavazzi S, Ucakhan OO, Willcox MDP, Downie LE. TFOS Lifestyle: Impact of contact lenses on the ocular surface. Ocul Surf 2023; 29:175-219. [PMID: 37149139 DOI: 10.1016/j.jtos.2023.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/08/2023]
Abstract
Several lifestyle choices made by contact lens wearers can have adverse consequences on ocular health. These include being non-adherent to contact lens care, sleeping in lenses, ill-advised purchasing options, not seeing an eyecare professional for regular aftercare visits, wearing lenses when feeling unwell, wearing lenses too soon after various forms of ophthalmic surgery, and wearing lenses when engaged in risky behaviors (e.g., when using tobacco, alcohol or recreational drugs). Those with a pre-existing compromised ocular surface may find that contact lens wear exacerbates ocular disease morbidity. Conversely, contact lenses may have various therapeutic benefits. The coronavirus disease-2019 (COVID-19) pandemic impinged upon the lifestyle of contact lens wearers, introducing challenges such as mask-associated dry eye, contact lens discomfort with increased use of digital devices, inadvertent exposure to hand sanitizers, and reduced use of lenses. Wearing contact lenses in challenging environments, such as in the presence of dust and noxious chemicals, or where there is the possibility of ocular trauma (e.g., sport or working with tools) can be problematic, although in some instances lenses can be protective. Contact lenses can be worn for sport, theatre, at high altitude, driving at night, in the military and in space, and special considerations are required when prescribing in such situations to ensure successful outcomes. A systematic review and meta-analysis, incorporated within the review, identified that the influence of lifestyle factors on soft contact lens dropout remains poorly understood, and is an area in need of further research. Overall, this report investigated lifestyle-related choices made by clinicians and contact lens wearers and discovered that when appropriate lifestyle choices are made, contact lens wear can enhance the quality of life of wearers.
Collapse
Affiliation(s)
- Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada.
| | - Nathan Efron
- School of Optometry and Vision Science, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Kalika Bandamwar
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand
| | - Melissa Barnett
- University of California, Davis Eye Center, Sacramento, CA, USA
| | - Deborah S Jacobs
- Massachusetts Eye & Ear, Harvard Medical School, Boston, MA, USA
| | - Isabelle Jalbert
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia
| | - Heiko Pult
- Dr Heiko Pult Optometry & Vision Research, Weinheim, Germany
| | | | - Heather Sheardown
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | | | - Ulli Stahl
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | | | - Jacqueline Tan
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia
| | - Silvia Tavazzi
- Department of Materials Science, University of Milano-Bicocca, Milan, Italy
| | | | - Mark D P Willcox
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Chan VWY, Phan CM, Ngo W, Jones L. Lysozyme Deposition on Contact Lenses in an In Vitro Blink-Simulation Eye Model Versus a Static Vial Deposition Model. Eye Contact Lens 2021; 47:388-393. [PMID: 33840748 DOI: 10.1097/icl.0000000000000784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE To evaluate active lysozyme deposition on daily disposable (DD) contact lenses (CL) using a novel in vitro blink model. METHODS Three conventional hydrogel DD CL materials (etafilcon A, omafilcon A, nelfilcon A) and three silicone hydrogel DD CL materials (delefilcon A, senofilcon A, somofilcon A) were tested. The device blink rate was set to 6 blinks/min with a tear flow rate of 1 μL/min using an artificial tear solution (ATS) containing lysozyme and other typical tear film components. After incubation at 2, 4, or 8 hr, lenses were removed, and lysozyme activity was measured. A separate experiment was conducted with lenses incubated in a static vial containing 480 μL of ATS. RESULTS Etafilcon A deposited significantly higher amounts of active lysozyme (402±102 μg/lens) than other lens materials after 8 hr (P<0.0001). Etafilcon A had a higher amount of active lysozyme using the blink model compared with the static vial (P=0.0435), whereas somofilcon A (P=0.0076) and senofilcon A (P=0.0019) had a higher amount of lysozyme activity in the vial compared with the blink model. CONCLUSION The blink model can be tuned to provide quantitative data that closely mimics ex vivo studies and can be used to model deposition of lysozyme on CL materials.
Collapse
Affiliation(s)
- Vivian W Y Chan
- Centre for Ocular Research and Education (CORE) (V.W.Y.C., C.-M.P., W.N., L.J.), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada ; and Centre for Eye and Vision Research (CEVR) (C.-M.P., W.N., L.J.), Hong Kong, China
| | | | | | | |
Collapse
|
4
|
Omali NB, Subbaraman LN, Heynen M, Lada M, Canavan K, Fadli Z, Ngo W, Jones L. Lipid deposition on contact lenses in symptomatic and asymptomatic contact lens wearers. Cont Lens Anterior Eye 2020; 44:56-61. [PMID: 32466858 DOI: 10.1016/j.clae.2020.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE Lipid deposition on contact lenses (CL) has traditionally been believed to reduce comfort during CL wear. The purpose of this study was to quantify lipid deposition on CL in a group of symptomatic and asymptomatic adapted CL wearers. METHODS This was a single-masked, randomized clinical trial. Only confirmed symptomatic (comfortable lens wear time (CWT) < 8 h and a noticeable reduction in comfort over the course of the day) and asymptomatic (CWT > 10 h and minimal reduction in comfort over the course of the day) participants were recruited to participate in the study. Participants wore senofilcon A lenses in combination with a polyquaternium-based care solution (OPTI-FREE Replenish). Worn CL samples were collected on Day 14. Deposited lipid amounts from the lenses (including cholesteryl ester, cholesterol and triolein) were quantified using a liquid chromatography-mass spectrometry technique. RESULTS Lipid deposition was significantly higher in CL extracts of asymptomatic wearers compared to the symptomatic wearers for all lipid types quantified, including cholesteryl ester (2.1 ± 0.6 vs 1.6 ± 0.5 log μg/lens), cholesterol (1.5 ± 0.3 vs 1.1 ± 0.3 log μg/lens) and triolein (0.3 ± 0.2 vs 0.1 ± 0.1 log μg/lens) (all p < 0.002). The amount of cholesteryl ester deposited was greatest (p = 0.0001), followed by cholesterol, then triolein, for both the asymptomatic and symptomatic groups (both p = 0.0001). CONCLUSION This study demonstrated that the asymptomatic group deposited a significantly greater amount of lipid on their CL. Although lipid levels measured are considered low to trigger any observable clinical deposition, they may influence other clinical outcomes, particularly comfort.
Collapse
Affiliation(s)
- Negar Babaei Omali
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Lakshman N Subbaraman
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Miriam Heynen
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Mark Lada
- Johnson and Johnson Vision, Jacksonville, USA
| | | | - Zohra Fadli
- Johnson and Johnson Vision, Jacksonville, USA
| | - William Ngo
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| | - Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
5
|
Efron N, Brennan NA, Chalmers RL, Jones L, Lau C, Morgan PB, Nichols JJ, Szczotka-Flynn LB, Willcox MD. Thirty years of 'quiet eye' with etafilcon A contact lenses. Cont Lens Anterior Eye 2020; 43:285-297. [PMID: 32278644 DOI: 10.1016/j.clae.2020.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 11/17/2022]
Abstract
Frequent replacement contact lenses made from the etafilcon A hydrogel lens material were introduced onto the market over 30 years ago, and etafilcon A remains the most widely used hydrogel lens material today. Although the prescribing of silicone hydrogel lenses is increasing, millions of lens wearers globally have been wearing hydrogel lenses for many years and exhibit a physiologically-stable 'quiet eye', with a low profile of adverse events. Hydrogel lenses are demonstrated to maintain a low inflammatory response and infection risk profile during daily wear, which in the case of etafilcon A, may be related to its low modulus, and the naturally-protective, anti-microbial, non-denatured lysozyme absorbed into the lens from the tear fluid. Although improved corneal physiology from decreased hypoxia with silicone hydrogel lenses is well accepted, equivalent levels of corneal oxygenation are maintained during daily wear of low to medium powered hydrogel lenses, which do not impede the daily corneal de-swelling process, and do not induce clinically significant changes in ocular health. Therefore, hydrogel lenses remain an important alternative for daily wear in modern contact lens practice.
Collapse
Affiliation(s)
- Nathan Efron
- Institute of Health and Biomedical Innovation, School of Optometry and Vision Science, Queensland University of Technology, Australia.
| | | | | | - Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Charis Lau
- Johnson & Johnson Vision, Inc, Jacksonville, FL, USA
| | - Philip B Morgan
- Eurolens Research, Division of Pharmacy and Optometry, The University of Manchester, UK
| | - Jason J Nichols
- The University of Alabama at Birmingham, School of Optometry, Birmingham, AL, USA
| | - Loretta B Szczotka-Flynn
- University Hospitals Eye Institute, University Hospitals Cleveland Medical Center, Department of Ophthalmology & Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Mark D Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
6
|
Depth Profile Assessment of the Early Phase Deposition of Lysozyme on Soft Contact Lens Materials Using a Novel In Vitro Eye Model. Eye Contact Lens 2018; 44 Suppl 2:S11-S18. [DOI: 10.1097/icl.0000000000000397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Heynen M, Babaei Omali N, Fadli Z, Coles-Brennan C, Subbaraman LN, Jones L. Selectivity and localization of lysozyme uptake in contemporary hydrogel contact lens materials. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1351-1364. [DOI: 10.1080/09205063.2017.1327751] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Miriam Heynen
- Centre for Contact Lens Research, School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
| | - Negar Babaei Omali
- Centre for Contact Lens Research, School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
| | - Zohra Fadli
- Johnson & Johnson Vision Care Inc., Jacksonville, FL, USA
| | | | - Lakshman N. Subbaraman
- Centre for Contact Lens Research, School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
| | - Lyndon Jones
- Centre for Contact Lens Research, School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
| |
Collapse
|
8
|
A Review of Techniques to Measure Protein Sorption to Soft Contact Lenses. Eye Contact Lens 2017; 43:276-286. [PMID: 28198731 DOI: 10.1097/icl.0000000000000366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To compare and critically evaluate a variety of techniques to measure the quantity and biological activity of protein sorption to contact lenses over short time periods. METHODS A literature review was undertaken investigating the major techniques to measure protein sorption to soft contact lens materials, with specific reference to measuring protein directly on lenses using in situ, ex situ, protein structural, and biological activity techniques. RESULTS The use of in situ techniques to measure protein quantity provides excellent sensitivity, but many are not directly applicable to contact lenses. Many ex situ techniques struggle to measure all sorbed proteins, and these measurements can have significant signal interference from the lens materials themselves. Techniques measuring the secondary and tertiary structures of sorbed proteins have exhibited only limited success. CONCLUSIONS There are a wide variety of techniques to measure both the amount of protein and the biological activity of protein sorbed to soft contact lens materials. To measure the mass of protein sorbed to soft contact lenses (not just thin films) over short time periods, the method of choice should be I radiolabeling. This technique is sensitive enough to measure small amounts of deposited protein, provided steps are taken to limit and measure any interaction of the iodine tracer with the materials. To measure the protein activity over short time periods, the method of choice should be to measure the biological function of sorbed proteins. This may require new methods or adaptations of existing ones.
Collapse
|
9
|
Metruccio MME, Evans DJ, Gabriel MM, Kadurugamuwa JL, Fleiszig SMJ. Pseudomonas aeruginosa Outer Membrane Vesicles Triggered by Human Mucosal Fluid and Lysozyme Can Prime Host Tissue Surfaces for Bacterial Adhesion. Front Microbiol 2016; 7:871. [PMID: 27375592 PMCID: PMC4891360 DOI: 10.3389/fmicb.2016.00871] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/23/2016] [Indexed: 01/24/2023] Open
Abstract
Pseudomonas aeruginosa is a leading cause of human morbidity and mortality that often targets epithelial surfaces. Host immunocompromise, or the presence of indwelling medical devices, including contact lenses, can predispose to infection. While medical devices are known to accumulate bacterial biofilms, it is not well understood why resistant epithelial surfaces become susceptible to P. aeruginosa. Many bacteria, including P. aeruginosa, release outer membrane vesicles (OMVs) in response to stress that can fuse with host cells to alter their function. Here, we tested the hypothesis that mucosal fluid can trigger OMV release to compromise an epithelial barrier. This was tested using tear fluid and corneal epithelial cells in vitro and in vivo. After 1 h both human tear fluid, and the tear component lysozyme, greatly enhanced OMV release from P. aeruginosa strain PAO1 compared to phosphate buffered saline (PBS) controls (∼100-fold). Transmission electron microscopy (TEM) and SDS-PAGE showed tear fluid and lysozyme-induced OMVs were similar in size and protein composition, but differed from biofilm-harvested OMVs, the latter smaller with fewer proteins. Lysozyme-induced OMVs were cytotoxic to human corneal epithelial cells in vitro and murine corneal epithelium in vivo. OMV exposure in vivo enhanced Ly6G/C expression at the corneal surface, suggesting myeloid cell recruitment, and primed the cornea for bacterial adhesion (∼4-fold, P < 0.01). Sonication disrupted OMVs retained cytotoxic activity, but did not promote adhesion, suggesting the latter required OMV-mediated events beyond cell killing. These data suggest that mucosal fluid induced P. aeruginosa OMVs could contribute to loss of epithelial barrier function during medical device-related infections.
Collapse
Affiliation(s)
| | - David J Evans
- School of Optometry, University of CaliforniaBerkeley, CA, USA; College of Pharmacy, Touro University CaliforniaVallejo, CA, USA
| | | | | | - Suzanne M J Fleiszig
- School of Optometry, University of CaliforniaBerkeley, CA, USA; Graduate Groups in Vision Science, Microbiology, and Infectious Diseases and Immunity, University of CaliforniaBerkeley, CA, USA
| |
Collapse
|
10
|
|