1
|
Millá E, Ventura-Abreu N, Vendrell C, Muniesa MJ, Pazos M, Gasull X, Comes N. Differential Gene and Protein Expression of Conjunctival Bleb Hyperfibrosis in Early Failure of Glaucoma Surgery. Int J Mol Sci 2023; 24:11949. [PMID: 37569323 PMCID: PMC10418990 DOI: 10.3390/ijms241511949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
The early failure of glaucoma surgery is mainly caused by over-fibrosis at the subconjunctival space, causing obliteration of the filtration bleb. Because fibrosis has a suspected basis of genetic predisposition, we have undertaken a prospective study to identify upregulated profibrotic genes in a population of glaucoma patients with signs of conjunctival fibrosis and early postoperative surgical failure. Clinical data of re-operated fibrosis patients, hyperfibrosis patients who re-operated more than once in a short time, and control patients with no fibrosis were recorded and analyzed at each follow-up visit. Conjunctival-Tenon surgical specimens were obtained intraoperatively to evaluate the local expression of a panel of genes potentially associated with fibrosis. In order to correlate gene expression signatures with protein levels, we quantified secreted proteins in primary cultures of fibroblasts from patients. Expression of VEGFA, CXCL8, MYC, and CDKN1A was induced in the conjunctiva of hyperfibrosis patients. VEGFA and IL8 protein levels were also increased in fibroblast supernatants. We propose that an increase in these proteins could be useful in detecting conjunctival fibrosis in glaucoma patients undergoing filtering surgery. Molecular markers could be crucial for early detection of patients at high risk of failure of filtration surgery, leading to more optimal and personalized treatments.
Collapse
Affiliation(s)
- Elena Millá
- Hospital Clínic de Barcelona, Institut Clinic d'Oftalmologia, ICOF, Sabino Arana nº1, 08028 Barcelona, Spain
- Institut Comtal d'Oftalmologia, Innova Ocular-ICO Barcelona, Via Augusta 48, 08006 Barcelona, Spain
| | | | - Cristina Vendrell
- Institut Comtal d'Oftalmologia, Innova Ocular-ICO Barcelona, Via Augusta 48, 08006 Barcelona, Spain
- Hospital de Viladecans, Avda. Gavà 38, 08840 Barcelona, Spain
| | - Maria Jesús Muniesa
- Hospital Clínic de Barcelona, Institut Clinic d'Oftalmologia, ICOF, Sabino Arana nº1, 08028 Barcelona, Spain
| | - Marta Pazos
- Hospital Clínic de Barcelona, Institut Clinic d'Oftalmologia, ICOF, Sabino Arana nº1, 08028 Barcelona, Spain
| | - Xavier Gasull
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, University of Barcelona, Casanova 143, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Edifici de Ponent, 2n vagó 3r pis, Passeig de la Vall d'Hebron 171, 08035 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
| | - Núria Comes
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, University of Barcelona, Casanova 143, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Edifici de Ponent, 2n vagó 3r pis, Passeig de la Vall d'Hebron 171, 08035 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
| |
Collapse
|
2
|
Hakim A, Guido B, Narsineni L, Chen DW, Foldvari M. Gene therapy strategies for glaucoma from IOP reduction to retinal neuroprotection: progress towards non-viral systems. Adv Drug Deliv Rev 2023; 196:114781. [PMID: 36940751 DOI: 10.1016/j.addr.2023.114781] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/25/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Glaucoma is the result of the gradual death of retinal ganglion cells (RGCs) whose axons form the optic nerve. Elevated intraocular pressure (IOP) is a major risk factors thatcontributes to RGC apoptosis and axonal loss at the lamina cribrosa, resulting in progressive reduction and eventual anterograde-retrograde transport blockade of neurotrophic factors. Current glaucoma management mainly focuses on pharmacological or surgical lowering of IOP, to manage the only modifiable risk factor. Although IOP reduction delays disease progression, it does not address previous and ongoing optic nerve degeneration. Gene therapy is a promising direction to control or modify genes involved in the pathophysiology of glaucoma. Both viral and non-viral gene therapy delivery systems are emerging as promising alternatives or add-on therapies to traditional treatments for improving IOP control and provide neuroprotection. The specific spotlight on non-viral gene delivery systems shows further progress towards improving the safety of gene therapy and implementing neuroprotection by targeting specific tissues and cells in the eye and specifically in the retina.
Collapse
Affiliation(s)
- Antoine Hakim
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Benjamin Guido
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Lokesh Narsineni
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Ding-Wen Chen
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Marianna Foldvari
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1; Waterloo Institute of Nanotechnology and Center for Bioengineering and Biotechnology University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1.
| |
Collapse
|
3
|
van Mechelen RJS, Wolters JE, Bertens CJF, Webers CAB, van den Biggelaar FJHM, Gorgels TGMF, Beckers HJM. Animal models and drug candidates for use in glaucoma filtration surgery: A systematic review. Exp Eye Res 2022; 217:108972. [PMID: 35114212 DOI: 10.1016/j.exer.2022.108972] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/17/2022]
Abstract
Glaucoma, a degenerative disease of the optic nerve, is the leading cause of irreversible blindness worldwide. Currently, there is no curative treatment. The only proven treatment is lowering intraocular pressure (IOP), the most important risk factor. Glaucoma filtration surgery (GFS) can effectively lower IOP. However, approximately 10% of all surgeries fail yearly due to excessive wound healing, leading to fibrosis. GFS animal models are commonly used for the development of novel treatment modalities. The aim of the present review was to provide an overview of available animal models and anti-fibrotic drug candidates. MEDLINE and Embase were systematically searched. Manuscripts until September 1st, 2021 were included. Studies that used animal models of GFS were included in this review. Additionally, the snowball method was used to identify other publications which had not been identified through the systematic search. Two hundred articles were included in this manuscript. Small rodents (e.g. mice and rats) are often used to study the fibrotic response after GFS and to test drug candidates. Due to their larger eyes, rabbits are better suited to develop medical devices. Novel drugs aim to inhibit specific pathways, e.g. through the use of modulators, monoclonal antibodies, aqueous suppressants or gene therapy. Although most newly studied drugs offer a higher safety profile compared to antimetabolites, their efficacy is in most cases lower when compared to MMC. Current literature on animal models and potential drug candidates for GFS were summarized in this review. Future research should focus on refining current animal models (for example through the induction of glaucoma prior to undertaking GFS) and standardizing animal research to ensure a higher reproducibility and reliability across different research groups. Lastly, novel therapies need to be further optimized, e.g. by conducting more research on the dosage, administration route, application frequency, the option of creating combination therapies, or the development of drug delivery systems for sustained release of anti-fibrotic medication.
Collapse
Affiliation(s)
- Ralph J S van Mechelen
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, 6229 ER, Maastricht, the Netherlands; Chemelot Institute for Science and Technology (InSciTe), 6229 GS, Maastricht, the Netherlands.
| | - Jarno Ej Wolters
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, 6229 ER, Maastricht, the Netherlands; Chemelot Institute for Science and Technology (InSciTe), 6229 GS, Maastricht, the Netherlands
| | - Christian J F Bertens
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, 6229 ER, Maastricht, the Netherlands; Chemelot Institute for Science and Technology (InSciTe), 6229 GS, Maastricht, the Netherlands
| | - Carroll A B Webers
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands
| | - Frank J H M van den Biggelaar
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands
| | - Theo G M F Gorgels
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands
| | - Henny J M Beckers
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands
| |
Collapse
|
4
|
Lee EJ, Han JC, Park DY, Cho J, Kee C. Effect of connective tissue growth factor gene editing using adeno-associated virus-mediated CRISPR-Cas9 on rabbit glaucoma filtering surgery outcomes. Gene Ther 2021; 28:277-286. [PMID: 32541929 DOI: 10.1038/s41434-020-0166-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 01/16/2023]
Abstract
Suppressing excessive wound healing responses is critical to ensure surgical success in glaucoma filtration surgery (GFS). Currently used adjunctive materials can lead to side effects due to the nonselectivity in cell inhibition and may require repeated applications. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system may become a compelling opportunity in glaucoma surgery due to its high selectivity and permanent effect. Connective tissue growth factor (CTGF) is one of the most potent stimulators of tissue fibrosis in the eye. Therefore, we tested the effect of CTGF suppression using the CRISPR-Cas9 system on GFS fibrosis. We used an adeno-associated virus (AAV)-CRISPR-Cas9 system and confirmed successful CTGF suppression was achieved in fibroblasts in vitro through western blot analysis and deep sequencing. In the in vivo intereye-comparison rabbit GFS model, CRISPR-CTGF-treated eyes showed significantly better survival of the surgery site, less subconjunctival fibrosis, limited collagen deposition, and reduced cellularity than untreated eyes. Our results suggest a new possibility of CRISPR-Cas9-mediated CTGF suppression to improve human GFS outcomes.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong Chul Han
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Do Young Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Junhun Cho
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Changwon Kee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
5
|
Gong R, Zuo C, Wu K, Zhang S, Qin X, Li Y, Gao X, Huang D, Lin M. A Comparison of Subconjunctival Wound Healing between Different Methods of Dissecting Subconjunctival Tissues. Ophthalmic Res 2020; 64:99-107. [PMID: 32564013 DOI: 10.1159/000509551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/17/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To compare different methods for dissecting subconjunctival tissues by developing subconjunctival wound healing models. METHODS New Zealand white rabbits were separated into 3 groups based on the method by which the rabbit subconjunctival wound healing model was generated: subconjunctival tissues were dissected episclerally (EPI) or subepithelially (SUB), with a corresponding blank control (CON). All the cases in the experimental groups were surgically prepared with conjunctival flaps, and they were sacrificed on the third postoperative day. At the surgical sites, the protein levels of hypoxia-inducible factor-1 (HIF-1)-α, vascular endothelial growth factor (VEGF)-A, and matrix metalloproteinase (MMP)-2 were detected by Western blot, morphological vascularity was measured by Adobe Photoshop, and subconjunctival fibrosis was assessed by histology. RESULTS Compared with the CON group, both the EPI and SUB groups showed significantly upregulated protein levels of HIF-1α, VEGF-A, and MMP-2. In addition, the protein levels of HIF-1α, VEGF-A, and MMP-2 were higher in the EPI group than in the SUB group. Morphological vascularity was significantly elevated in the EPI group compared with the SUB and CON groups. Collagen content was markedly increased in the EPI group compared with the SUB and CON groups. CONCLUSIONS Dissecting subconjunctival tissues subepithelially inhibits subconjunctival fibrosis, which may be instructive in tenonectomy in filtration surgery.
Collapse
Affiliation(s)
- Ruowen Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Chengguo Zuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Keling Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Simin Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xi Qin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yangyang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xinbo Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Danping Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Mingkai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China,
| |
Collapse
|
6
|
Suh W, Han KE, Han JR. Safety of Using Matrix Metalloproteinase Inhibitor in Experimental Glaucoma Filtration Surgery. J Korean Med Sci 2017; 32:666-671. [PMID: 28244295 PMCID: PMC5334167 DOI: 10.3346/jkms.2017.32.4.666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/07/2017] [Indexed: 11/22/2022] Open
Abstract
We evaluated the safety of matrix metalloproteinase (MMP) inhibitor in experimental glaucoma filtration surgery in an animal model. Fifteen New Zealand white rabbits underwent an experimental trabeculectomy and were randomly allocated into 3 groups according to the adjuvant agent: no treatment group (n = 5), 0.02% mitomycin C (MMC) soaking group (n = 5), and MMP inhibitor (ilomastat) subconjunctival injection group (n = 5). Slit lamp examination with Seidel testing, pachymetry, and specular microscopy was performed preoperatively and postoperatively. The conjunctiva and ciliary body toxicity were evaluated with scores according to the pathologic grading systems. Electron microscopy was used to examine the structural changes in cornea, conjunctiva, and ciliary body. In the ilomastat-treated group, there was no statistically significant change in central corneal thickness preoperatively and at 28 days postoperatively (P = 0.655). There were also no significant changes in specular microscopy findings over the duration of the study in the ilomastat-treated group. The conjunctival toxicity score was 1 in the control group, 1.5 in the ilomastat-treated group, and 2 in the MMC-treated group. When assessing ciliary body toxicity scores, the ilomastat-treated group score was 0.5 and the MMC-treated group score was 1.5. Transmission electron microscopy did not show structural changes in the cornea and ciliary body whereas the structural changes were noticed in MMC group. A single subconjunctival injection of MMP inhibitor during the experimental trabeculectomy showed a less toxic affect in the rabbit cornea, conjunctiva, and ciliary body compared to MMC.
Collapse
Affiliation(s)
- Wool Suh
- Department of Ophthalmology, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Kyung Eun Han
- Department of Ophthalmology, Institute of Ophthalmology and Optometry, Ewha Womans University Mok-Dong Hospital, Ewha Womans University School of Medicine, Seoul, Korea
| | - Jae Ryong Han
- Department of Ophthalmology, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea.
| |
Collapse
|