1
|
Lin Y, Luo W, Jiang B, Lin Q, Tang M, Li X, Xie L. The effect of GelDex-S58 hydrogel on anti-conjunctival scarring after glaucoma filtration surgery. iScience 2023; 26:107633. [PMID: 37664639 PMCID: PMC10474451 DOI: 10.1016/j.isci.2023.107633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/18/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023] Open
Abstract
Excessive scarring is the main cause of surgical failure in glaucoma filtration surgery. S58 has been shown to have an excellent antifibrotic effect but its duration of action is not sufficient to achieve the desired antiscarring effect. In this study, a light-cured bioadhesive hydrogel composed of GelMA and oxidized dextran (ODex), namely, GelDex, was used to load S58 (GelDex-S58). The microscopic morphology of GelDex-S58 appeared to be a porous structure with good slow-release properties and suitable degradation time. Cell Counting Kit-8, cell scratch and transwell assays showed that GelDex-S58 significantly reduced TGF-β-induced fibroblast proliferation, increased migration and invasion ability. In in vivo studies, GelDex-S58 treatment prolonged follicular retention, reduced mean intraocular pressure, and significantly reduced collagen deposition and α-SMA expression levels in the conjunctival tissue compared to treatment with S58 alone. In conclusion, GelDex-S58 could reduce scar formation after glaucoma filtration surgery.
Collapse
Affiliation(s)
- Yi Lin
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wangdu Luo
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bingcai Jiang
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qianyi Lin
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Tang
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangji Li
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Xie
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Teplitsky JE, Vinokurtseva A, Armstrong JJ, Denstedt J, Liu H, Hutnik CML. ALK5 Inhibition of Subconjunctival Scarring From Glaucoma Surgery: Effects of SB-431542 Compared to Mitomycin C in Human Tenon's Capsule Fibroblasts. Transl Vis Sci Technol 2023; 12:31. [PMID: 36826843 PMCID: PMC9973532 DOI: 10.1167/tvst.12.2.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Purpose The gold standard for managing postoperative ocular fibrosis in glaucoma surgery is the chemotherapeutic mitomycin C (MMC) despite its association with significant adverse effects. This study compares in vitro the antifibrotic efficacy and cytotoxicity of the small-molecule TGFβ1 inhibitor SB-431542 (SB) to MMC. Methods To measure collagen contraction, human Tenon's capsule fibroblasts (HTCFs) embedded in a three-dimensional collagen lattice were exposed to 0.2 mg/mL MMC or 20 µM SB followed by incubation with 2 ng/mL TGFβ1. Total protein extracted from experimentally treated HTCFs underwent immunoblotting for α-smooth muscle actin (α-SMA), matrix metallopeptidase 9 (MMP-9), and EDA splice-variant fibronectin (EDA-FN) expression. Cytotoxicity and cell metabolism were assessed using LIVE/DEAD staining, lactate dehydrogenase (LDH) assay, and methylthiazole tetrazolium (MTT) assay. Results Collagen lattice contraction in TGFβ1-induced HTCFs was significantly lowered by SB and MMC. Pretreatment with SB and MMC significantly lowered protein expression of α-SMA, MMP-9, and EDA-FN in HTCFs relative to TGFβ1 alone. HTCF viability in collagen lattices was significantly reduced with MMC pretreatment but not SB pretreatment. MMC-pretreated HTCFs had a significant increase in LDH release after 3 hours and a decrease in MTT activity after 20 minutes, while SB-pretreated HTCFs showed no significant changes via MTT or LDH assay during the same treatment period. Conclusions SB shows comparable efficacy to MMC in reducing expression of fibrosis-promoting proteins in HTCFs and in vitro scarring activity. SB distinguishes itself from MMC by exhibiting less cytotoxicity in both two-dimensional and three-dimensional in vitro assays. Translational Relevance This study demonstrates in vitro the potential of SB as a safer alternative ocular antifibrotic agent.
Collapse
Affiliation(s)
- Jack E. Teplitsky
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Anastasiya Vinokurtseva
- Department of Ophthalmology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - James J. Armstrong
- Department of Ophthalmology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada,Ivey Eye Institute, St. Joseph's Health Care, London, Ontario, Canada
| | - James Denstedt
- Department of Ophthalmology, University of Ottawa, Ottawa, Ontario, Canada
| | - Hong Liu
- Department of Ophthalmology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada,Lawson Health Research Institute, London, Ontario, Canada
| | - Cindy M. L. Hutnik
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada,Department of Ophthalmology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada,Ivey Eye Institute, St. Joseph's Health Care, London, Ontario, Canada,Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
3
|
Kim MH, Lim SH. Matrix Metalloproteinases and Glaucoma. Biomolecules 2022; 12:biom12101368. [PMID: 36291577 PMCID: PMC9599265 DOI: 10.3390/biom12101368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are enzymes that decompose extracellular matrix (ECM) proteins. MMPs are thought to play important roles in cellular processes, such as cell proliferation, differentiation, angiogenesis, migration, apoptosis, and host defense. MMPs are distributed in almost all intraocular tissues and are involved in physiological and pathological mechanisms of the eye. MMPs are also associated with glaucoma, a progressive neurodegenerative disease of the eyes. MMP activity affects intraocular pressure control and apoptosis of retinal ganglion cells, which are the pathological mechanisms of glaucoma. It also affects the risk of glaucoma development based on genetic pleomorphism. In addition, MMPs may affect the treatment outcomes of glaucoma, including the success rate of surgical treatment and side effects on the ocular surface due to glaucoma medications. This review discusses the various relationships between MMP and glaucoma.
Collapse
Affiliation(s)
- Moo Hyun Kim
- Department of Ophthalmology, Daegu Premier Eye Center, Suseong-ro 197, Suseong-Gu, Daegu 42153, Korea
| | - Su-Ho Lim
- Department of Ophthalmology, Daegu Veterans Health Service Medical Center, 60 Wolgok-Ro, Dalseo-Gu, Daegu 42835, Korea
- Correspondence: ; Tel.: +82-53-630-7572
| |
Collapse
|
4
|
Germanova VN, Karlova EV, Volova LT, Zolotarev AV, Rossinskaya VV, Zakharov ID, Korigodskiy AR, Boltovskaya VV, Nefedova IF, Radaykina MV. PLA-PEG Implant as a Drug Delivery System in Glaucoma Surgery: Experimental Study. Polymers (Basel) 2022; 14:polym14163419. [PMID: 36015676 PMCID: PMC9414474 DOI: 10.3390/polym14163419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Excessive postoperative scarring halts the effectiveness of glaucoma surgery and still remains a challenging problem. The purpose of this study was to develop a PLA-PEG-based drug delivery system with cyclosporine A or everolimus for wound healing modulation. Methods: PLA-PEG implants saturation with cyclosporine A or everolimus as well as their further in vitro release were analyzed. Anti-proliferative activity and cytotoxicity of the immunosuppressants were studied in vitro using human Tenon’s fibroblasts. Thirty-six rabbits underwent glaucoma filtration surgery with the application of sham implants or samples saturated with cyclosporine A or everolimus. The follow-up period was six months. A morphological study of the surgery area was also performed at seven days, one, and six months post-op. Results: PLA-PEG implants revealed a satisfactory ability to cumulate either cyclosporine A or everolimus. The most continuous period of cyclosporine A and everolimus desorption was 7 and 13 days, respectively. Immunosuppressants demonstrated marked anti-proliferative effect regarding human Tenon’s fibroblasts without signs of cytotoxicity at concentrations provided by the implants. Application of PLA-PEG implants saturated with immunosuppressants improved in vivo glaucoma surgery outcomes. Conclusions: Prolonged delivery of either cyclosporine A or everolimus by means of PLA-PEG implants represents a promising strategy of wound healing modulation in glaucoma filtration surgery.
Collapse
Affiliation(s)
- Viktoriya N. Germanova
- Department of Ophthalmology, Samara State Medical University, 443068 Samara, Russia
- Eroshevskiy Eye Hospital, 443068 Samara, Russia
- Correspondence:
| | - Elena V. Karlova
- Department of Ophthalmology, Samara State Medical University, 443068 Samara, Russia
- Eroshevskiy Eye Hospital, 443068 Samara, Russia
| | - Larisa T. Volova
- Biotechnology Center “BioTech”, Samara State Medical University, 443079 Samara, Russia
| | - Andrey V. Zolotarev
- Department of Ophthalmology, Samara State Medical University, 443068 Samara, Russia
- Eroshevskiy Eye Hospital, 443068 Samara, Russia
| | | | | | | | | | - Irina F. Nefedova
- Institute of Experimental Medicine and Biotechnology, Samara State Medical University, 443079 Samara, Russia
| | | |
Collapse
|
5
|
van Mechelen RJS, Wolters JE, Bertens CJF, Webers CAB, van den Biggelaar FJHM, Gorgels TGMF, Beckers HJM. Animal models and drug candidates for use in glaucoma filtration surgery: A systematic review. Exp Eye Res 2022; 217:108972. [PMID: 35114212 DOI: 10.1016/j.exer.2022.108972] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/17/2022]
Abstract
Glaucoma, a degenerative disease of the optic nerve, is the leading cause of irreversible blindness worldwide. Currently, there is no curative treatment. The only proven treatment is lowering intraocular pressure (IOP), the most important risk factor. Glaucoma filtration surgery (GFS) can effectively lower IOP. However, approximately 10% of all surgeries fail yearly due to excessive wound healing, leading to fibrosis. GFS animal models are commonly used for the development of novel treatment modalities. The aim of the present review was to provide an overview of available animal models and anti-fibrotic drug candidates. MEDLINE and Embase were systematically searched. Manuscripts until September 1st, 2021 were included. Studies that used animal models of GFS were included in this review. Additionally, the snowball method was used to identify other publications which had not been identified through the systematic search. Two hundred articles were included in this manuscript. Small rodents (e.g. mice and rats) are often used to study the fibrotic response after GFS and to test drug candidates. Due to their larger eyes, rabbits are better suited to develop medical devices. Novel drugs aim to inhibit specific pathways, e.g. through the use of modulators, monoclonal antibodies, aqueous suppressants or gene therapy. Although most newly studied drugs offer a higher safety profile compared to antimetabolites, their efficacy is in most cases lower when compared to MMC. Current literature on animal models and potential drug candidates for GFS were summarized in this review. Future research should focus on refining current animal models (for example through the induction of glaucoma prior to undertaking GFS) and standardizing animal research to ensure a higher reproducibility and reliability across different research groups. Lastly, novel therapies need to be further optimized, e.g. by conducting more research on the dosage, administration route, application frequency, the option of creating combination therapies, or the development of drug delivery systems for sustained release of anti-fibrotic medication.
Collapse
Affiliation(s)
- Ralph J S van Mechelen
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, 6229 ER, Maastricht, the Netherlands; Chemelot Institute for Science and Technology (InSciTe), 6229 GS, Maastricht, the Netherlands.
| | - Jarno Ej Wolters
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, 6229 ER, Maastricht, the Netherlands; Chemelot Institute for Science and Technology (InSciTe), 6229 GS, Maastricht, the Netherlands
| | - Christian J F Bertens
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, 6229 ER, Maastricht, the Netherlands; Chemelot Institute for Science and Technology (InSciTe), 6229 GS, Maastricht, the Netherlands
| | - Carroll A B Webers
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands
| | - Frank J H M van den Biggelaar
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands
| | - Theo G M F Gorgels
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands
| | - Henny J M Beckers
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands
| |
Collapse
|
6
|
Chang KC, Liu PF, Chang CH, Lin YC, Chen YJ, Shu CW. The interplay of autophagy and oxidative stress in the pathogenesis and therapy of retinal degenerative diseases. Cell Biosci 2022; 12:1. [PMID: 34980273 PMCID: PMC8725349 DOI: 10.1186/s13578-021-00736-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/19/2021] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress is mainly caused by intracellular reactive oxygen species (ROS) production, which is highly associated with normal physiological homeostasis and the pathogenesis of diseases, particularly ocular diseases. Autophagy is a self-clearance pathway that removes oxidized cellular components and regulates cellular ROS levels. ROS can modulate autophagy activity through transcriptional and posttranslational mechanisms. Autophagy further triggers transcription factor activation and degrades impaired organelles and proteins to eliminate excessive ROS in cells. Thus, autophagy may play an antioxidant role in protecting ocular cells from oxidative stress. Nevertheless, excessive autophagy may cause autophagic cell death. In this review, we summarize the mechanisms of interaction between ROS and autophagy and their roles in the pathogenesis of several ocular diseases, including glaucoma, age-related macular degeneration (AMD), diabetic retinopathy (DR), and optic nerve atrophy, which are major causes of blindness. The autophagy modulators used to treat ocular diseases are further discussed. The findings of the studies reviewed here might shed light on the development and use of autophagy modulators for the future treatment of ocular diseases.
Collapse
Affiliation(s)
- Kun-Che Chang
- Department of Ophthalmology and Neurobiology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hsuan Chang
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, No. 70, Lianhai Rd., Gushan Dist., Kaohsiung, 80424, Taiwan
| | - Ying-Cheng Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yen-Ju Chen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chih-Wen Shu
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, No. 70, Lianhai Rd., Gushan Dist., Kaohsiung, 80424, Taiwan.
| |
Collapse
|
7
|
Di Gregorio J, Robuffo I, Spalletta S, Giambuzzi G, De Iuliis V, Toniato E, Martinotti S, Conti P, Flati V. The Epithelial-to-Mesenchymal Transition as a Possible Therapeutic Target in Fibrotic Disorders. Front Cell Dev Biol 2020; 8:607483. [PMID: 33409282 PMCID: PMC7779530 DOI: 10.3389/fcell.2020.607483] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is a chronic and progressive disorder characterized by excessive deposition of extracellular matrix, which leads to scarring and loss of function of the affected organ or tissue. Indeed, the fibrotic process affects a variety of organs and tissues, with specific molecular background. However, two common hallmarks are shared: the crucial role of the transforming growth factor-beta (TGF-β) and the involvement of the inflammation process, that is essential for initiating the fibrotic degeneration. TGF-β in particular but also other cytokines regulate the most common molecular mechanism at the basis of fibrosis, the Epithelial-to-Mesenchymal Transition (EMT). EMT has been extensively studied, but not yet fully explored as a possible therapeutic target for fibrosis. A deeper understanding of the crosstalk between fibrosis and EMT may represent an opportunity for the development of a broadly effective anti-fibrotic therapy. Here we report the evidences of the relationship between EMT and multi-organ fibrosis, and the possible therapeutic approaches that may be developed by exploiting this relationship.
Collapse
Affiliation(s)
- Jacopo Di Gregorio
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Iole Robuffo
- Institute of Molecular Genetics, National Research Council, Section of Chieti, Chieti, Italy
| | - Sonia Spalletta
- Department of Clinical Pathology, E. Profili Hospital, Fabriano, Ancona, Italy
| | - Giulia Giambuzzi
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Vincenzo De Iuliis
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Elena Toniato
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Stefano Martinotti
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Pio Conti
- Postgraduate Medical School, University of Chieti-Pescara, Chieti, Italy
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
8
|
Wang T, Li W, Zhong L, Ye H, Deng J, Chen Y, Wang T, Ling S. Evaluation of the Effects of Biohcly in an In Vivo Model of Mechanical Wounds in the Rabbit Cornea. J Ocul Pharmacol Ther 2019; 35:189-199. [PMID: 30888249 DOI: 10.1089/jop.2018.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Biohcly is a type of acidic nanoclustered water shown to exert an antimicrobial effect and play a role in the tissue-healing process in previous experiments. This study was performed to evaluate the in vivo effects of Biohcly treatment on mechanical corneal wound healing. METHODS Rabbit cornea "acute" mechanical wounds were created with an 8-mm hydraulic pressure trephine. The corneal wounds were treated with either Biohcly (left eye) or sterile saline (right eye) 4 times per day. To determine the state of the wounds, the wound healing rate (WHR), inflammatory index (IF), neovascularization, and anterior segment optical coherence tomography (AS-OCT) were evaluated. The expression of inflammatory factors was examined by quantitative real-time reverse transcriptional polymerase chain reaction, enzyme-linked immunosorbent assay, and immunohistochemical staining. RESULTS Biohcly was more effective than saline in healing corneal ulcers as demonstrated by the WHR calculated on the 9th and 14th days after surgery (P < 0.05). The histological and AS-OCT examinations revealed better regeneration and reduced corneal scars in the Biohcly-treated corneas. No neovascularization formed in the corneas treated with Biohcly, whereas 25% of the saline-treated wounds developed this complication. In addition, the IF scores of the Biohcly-treated wounds were significantly lower than those of the saline-treated wounds. Compared with the right-eye corneas, the left-eye corneas had much lower protein and mRNA levels of matrix metalloproteinase-9 (MMP-9) after the injury. CONCLUSIONS Biohcly plays a role in wound healing and anti-inflammation in the treatment of corneal wounds. The downregulation of MMP-9 in the Biohcly-treated corneas might have been responsible for this effect.
Collapse
Affiliation(s)
- Ting Wang
- 1 Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Weihua Li
- 2 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Lei Zhong
- 1 Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Hui Ye
- 1 Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Juan Deng
- 1 Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yongge Chen
- 3 APR Applied Pharma Research, s.a., Balerna, Switzerland
| | - Tao Wang
- 1 Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Shiqi Ling
- 1 Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
9
|
Sung MS, Eom GH, Kim SJ, Kim SY, Heo H, Park SW. Trichostatin A Ameliorates Conjunctival Fibrosis in a Rat Trabeculectomy Model. ACTA ACUST UNITED AC 2018; 59:3115-3123. [DOI: 10.1167/iovs.18-23826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Mi Sun Sung
- Department of Ophthalmology and Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Gwang Hyeon Eom
- Department of Pharmacology, Chonnam National University Medical School, Hwasungun, South Korea
| | - Soo Jin Kim
- Department of Ophthalmology and Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - So Young Kim
- Department of Ophthalmology and Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Hwan Heo
- Department of Ophthalmology and Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Sang Woo Park
- Department of Ophthalmology and Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital, Gwangju, South Korea
- Center for Creative Biomedical Scientists, Chonnam National University, Gwangju, South Korea
| |
Collapse
|