1
|
Foster WJ, Berg BW, Luminais SN, Hadayer A, Schaal S. Computational Modeling of Ophthalmic Procedures: Computational Modeling of Ophthalmic Procedures. Am J Ophthalmol 2022; 241:87-107. [PMID: 35358485 PMCID: PMC9444883 DOI: 10.1016/j.ajo.2022.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/16/2022] [Accepted: 03/17/2022] [Indexed: 11/01/2022]
Abstract
PURPOSE To explore how finite-element calculations can continue to contribute to diverse problems in ophthalmology and vision science, we describe our recent work on modeling the force on the peripheral retina in intravitreal injections and how that force increases with shorter, smaller gauge needles. We also present a calculation that determines the location and stress on a retinal pigment epithelial detachment during an intravitreal injection, the possibility that stress induced by the injection can lead to a tear of the retinal pigment epithelium. BACKGROUND Advanced computational models can provide a critical insight into the underlying physics in many surgical procedures, which may not be intuitive. METHODS The simulations were implemented using COMSOL Multiphysics. We compared the monkey retinal adhesive force of 18 Pa with the results of this study to quantify the maximum retinal stress that occurs during intravitreal injections. CONCLUSIONS Currently used 30-gauge needles produce stress on the retina during intravitreal injections that is only slightly below the limit that can create retinal tears. As retina specialists attempt to use smaller needles, the risk of complications may increase. In addition, we find that during an intravitreal injection, the stress on the retina in a pigment epithelial detachment occurs at the edge of the detachment (found clinically), and the stress is sufficient to tear the retina. These findings may guide physicians in future clinical research. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Collapse
Affiliation(s)
- William J Foster
- From the Department of Bioengineering (W.J.F.), Lewes Katz School of Medicine (B.W.B., S.N.L.), Temple University, Philadelphia, Pennsylvania, USA; Altasciences, Montréal, Québec, Canada (W.J.F.).
| | - Brian W Berg
- From the Department of Bioengineering (W.J.F.), Lewes Katz School of Medicine (B.W.B., S.N.L.), Temple University, Philadelphia, Pennsylvania, USA
| | - Steven N Luminais
- From the Department of Bioengineering (W.J.F.), Lewes Katz School of Medicine (B.W.B., S.N.L.), Temple University, Philadelphia, Pennsylvania, USA
| | - Amir Hadayer
- Department of Ophthalmology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (A.H.)
| | - Shlomit Schaal
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, Massachusetts, USA (S.S.)
| |
Collapse
|
2
|
Narayanan N, Jain N, Ravi P, Natarajan V. The outcome of 70/30 taco insertion through a 2.8 mm clear corneal incision in Descemet's stripping automated endothelial keratoplasty - A retrospective analysis. Indian J Ophthalmol 2021; 70:95-99. [PMID: 34937216 PMCID: PMC8917581 DOI: 10.4103/ijo.ijo_663_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Purpose: To assess the long-term outcome of graft insertion by taco technique through a 2.8-mm clear corneal incision in patients undergoing Descemet’s stripping automated endothelial keratoplasty (DSAEK). Methods: This is a retrospective interventional case series of 77 eyes of 75 patients who underwent DSAEK in a tertiary eye hospital. The DSAEK donor grafts were folded to an uneven 70/30 taco and held at a single point using Utrata forceps. All insertions were through a 2.8-mm clear corneal incision except the two aphakic patients requiring combined SFIOL implantation. All patients underwent a comprehensive eye examination preoperatively and were followed up to 6 years postoperatively. Visual outcomes, graft clarity, and complications of all and endothelial cell loss in 22 patients with available postop specular microscopy were analyzed. Results: Overall, 59 (76.6%) had clear grafts until the final follow-up. Visual acuity improved in 48 (62.3%) from an average of 1.3 to 0.8 logMAR (P = 0.0001). Vision was maintained in seven and worsened in four eyes. Grafts failed in 18 (23.3%) eyes: seven (9%) were primary failures, two post rejection, four done for failed PK did not clear, four due to worsening of preexisting glaucoma, and one noncompliant failed eventually. Average endothelial cell density reduction was 26.3% (mean preop donor 2419 to postop 1779 cells/mm2; P = 0.000). Conclusion: Our study shows good long-term clinical outcome of DSAEK using Taco technique through a 2.8-mm clear corneal incision in a tertiary hospital.
Collapse
Affiliation(s)
- Niveditha Narayanan
- Department of Cornea and Refractive Surgery, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Nikhila Jain
- Department of Cornea and Refractive Surgery, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Praneesh Ravi
- Department of Cornea and Refractive Services and Biostatistician, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Viswanathan Natarajan
- Statistician, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Li H, Chen M, Zhou Q, Pan X, Cheng J, Cong L, Zhang T, Dong Y, Xie L. Biomechanical Effects of Deep Anterior Lamellar Keratoplasty and Penetrating Keratoplasty for Keratoconus: A Finite Element Analysis. Transl Vis Sci Technol 2021; 10:15. [PMID: 34388236 PMCID: PMC8363774 DOI: 10.1167/tvst.10.9.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To theoretically compare corneal displacement and the von Mises (VM) stress distribution of deep anterior lamellar keratoplasty (DALK) and penetrating keratoplasty (PK) for keratoconus (KC) and to evaluate the effects of residual stromal thickness (RST) and intraocular pressure (IOP) on postoperative corneal biomechanics. Methods We performed DALK and PK simulations using Ansys by employing anisotropic nonlinear hyperelastic corneal material properties. We analyzed corneal displacement and VM stress in DALK and PK models under IOPs of 10, 15, 20, and 25 mmHg. We established two DALK models: The ideal-type DALK ensured that postoperative central corneal thickness was constant at 560 µm and the corneal graft thickness varied with RST. The clinical-type DALK ensured that corneal grafts had the same thickness (500 µm) regardless of RST. Then we analyzed the effects of RST and IOP on postoperative corneal displacement and VM stress. Results Corneal displacement and VM stress were lower in the DALK than in the PK model. In the ideal-type DALK model, an increase in RST was associated with increased deformation and decreased VM stress in the healing zone, except for a RST of 0 µm. In the clinical-type DALK model, deformation and VM stress in the healing zone decreased with an increase in RST, except for a RST of 0 µm. Conclusions DALK showed more stability than PK. For the ideal-type DALK model, an increase in RST resulted in decreased postoperative corneal biomechanics in the healing zone. For the clinical-type DALK model, corneal deformation and VM stress decreased with an increase in RST, which provides numerical evidence for the design of corneal transplantation for patients with KC. Translational Relevance In this computational modeling study, we first theoretically compared corneal biomechanics between DALK and PK for KC. Then, the effects of RST and IOP on postoperative corneal biomechanics were investigated. Our findings provide novel insights into the optimal design for corneal transplantation for patients with KC.
Collapse
Affiliation(s)
- Hua Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Min Chen
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Xiaojing Pan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Jun Cheng
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Lin Cong
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Ting Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Yanling Dong
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| |
Collapse
|
4
|
A novel numerical modelling approach for keratoplasty eye procedure. Biomech Model Mechanobiol 2019; 18:1429-1442. [PMID: 31079255 DOI: 10.1007/s10237-019-01156-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/20/2019] [Indexed: 02/03/2023]
Abstract
Objective of the work is to investigate stress and deformation that conrneal tissue and donor graft undergo during endothelial keratoplasty. In order to attach the donor graft to the cornea, different air bubble pressure profiles acting on the graft are considered. This study is carried out by employing a three-dimensional nonlinear finite element methodology, combined with a contact algorithm. The ocular tissues are treated as isotropic, hyper-elastic and nearly-incompressible materials. The contact algorithm, based on the penalty-based node-to-surface approach, is used to model the donor graft-corneal interface region. First, the proposed computational methodology is tested against benchmark data for bending of the plates over a cylinder. Then, the influence of geometrical and material parameters of the graft on the corneal contact-structural response is investigated. The results are presented in terms of Von Mises stress intensity, displacement and mean contact force. Results clearly indicate that the air bubble pressure plays a key role in the corneal stress and strain, as well as graft stiffness and thickness.
Collapse
|