1
|
Tonner H, Hunn S, Auler N, Schmelter C, Pfeiffer N, Grus FH. Dynamin-like Protein 1 (DNML1) as a Molecular Target for Antibody-Based Immunotherapy to Treat Glaucoma. Int J Mol Sci 2022; 23:ijms232113618. [PMID: 36362420 PMCID: PMC9654827 DOI: 10.3390/ijms232113618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/23/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022] Open
Abstract
Slow and progressive loss of retinal ganglion cells (RGCs) is the main characteristic of glaucoma, the second leading cause of blindness worldwide. Previous studies have shown that impaired mitochondrial dynamics could facilitate retinal neurodegeneration. Mitochondrial dynamics are regulated directly (fission) or more indirectly (fusion) by dynamin-like protein 1 (DNML1). Therefore, DNM1L might be a promising target for an antibody-based approach to treat glaucoma. The consequences of targeting endogenous DNM1L by antibodies in a glaucoma animal model have not been investigated yet. Here, we show that the intravitreal application of an anti-DNM1L antibody showed protective effects regarding the survival of RGCs and their axons in the retinal nerve fiber layer (RNFL). Antibody treatment also improved retinal functionality, as observed by electroretinography (Ganzfeld ERG). Western blot analysis revealed altered DNM1L phosphorylation and altered expression of proteins related to apoptosis suggesting a decreased apoptosis rate. Mass spectrometry analysis revealed 28 up-regulated and 21 down-regulated proteins (p < 0.05) in both experimental groups. Protein pathway analysis showed that many proteins interacted directly with the target protein DNM1L and could be classified into three main protein clusters: Vesicle traffic-associated (NSF, SNCA, ARF1), mitochondrion-associated (HSP9A, SLC25A5/ANT2, GLUD1) and cytoskeleton-associated (MAP1A) signaling pathway. Our results demonstrate that DNM1L is a promising target for an antibody-based approach to glaucoma therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Franz H. Grus
- Correspondence: ; Tel.: +49-6131-17-3328; Fax: +49-6131-4970563
| |
Collapse
|
2
|
Seleem AA. Induction of hyperpigmentation and heat shock protein 70 response to the toxicity of methomyl insecticide during the organ development of the Arabian toad, Bufo arabicus (Heyden,1827). J Histotechnol 2019; 42:104-115. [PMID: 31492089 DOI: 10.1080/01478885.2019.1619653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Methomyl (MET) is a carbamate insecticide which is used as a substitute for organophosphorus compounds to protect crops against insects. The present study aims to evaluate the cytoprotection response of pigment cells and heat shock protein 70 (HSP70) after exposure to MET during the tadpole developmental stages of the Arabian toad, Bufo arabicus. Three developmental larval stages of the toad were selected and divided into two groups; Control and MET-exposed (MET-EX) tadpoles (10ppm). MET-EX tadpoles showed an increased number of pigment cells in the liver, kidney, anterior eye chamber, and skin tissues as compared to the control. The glycogen content in the developing liver and muscles (myotomes) of MET-EX tadpoles was decreased as compared to the control. In the MET-EX tadpoles, immunohistochemical staining showed an increase of HSP70 expression in the liver hepatocytes, the nucleated red blood cells (nRBC) in kidney glomeruli, the iridocorneal angle of anterior eye chamber, and the skin as compared to the control. The current study concluded that pigment cells and HSP70 represented a cytoprotecting response against MET insecticide during the organ development of B. arabicas tadpoles. Therefore, MET use should be regularly monitored in the environment to protect animals and human from exposure to this insecticide.
Collapse
Affiliation(s)
- Amin Abdou Seleem
- Zoology Department, Faculty of Science, Sohag University , Sohag , Egypt.,Biology Department, Faculty of Science and Arts, Al-Ula, Taibah University , Medina , Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Miller DJ, Fort PE. Heat Shock Proteins Regulatory Role in Neurodevelopment. Front Neurosci 2018; 12:821. [PMID: 30483047 PMCID: PMC6244093 DOI: 10.3389/fnins.2018.00821] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/22/2018] [Indexed: 01/20/2023] Open
Abstract
Heat shock proteins (Hsps) are a large family of molecular chaperones that are well-known for their roles in protein maturation, re-folding and degradation. While some Hsps are constitutively expressed in certain regions, others are rapidly upregulated in the presence of stressful stimuli. Numerous stressors, including hyperthermia and hypoxia, can induce the expression of Hsps, which, in turn, interact with client proteins and co-chaperones to regulate cell growth and survival. Such interactions must be tightly regulated, especially at critical points during embryonic and postnatal development. Hsps exhibit specific patterns of expression consistent with a spatio-temporally regulated role in neurodevelopment. There is also growing evidence that Hsps may promote or inhibit neurodevelopment through specific pathways regulating cell differentiation, neurite outgrowth, cell migration, or angiogenesis. This review will examine the regulatory role that these individual chaperones may play in neurodevelopment, and will focus specifically on the signaling pathways involved in the maturation of neuronal and glial cells as well as the underlying vascular network.
Collapse
Affiliation(s)
- David J Miller
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Patrice E Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Yan Z, Wei H, Ren C, Yuan S, Fu H, Lv Y, Zhu Y, Zhang T. Gene expression of Hsps in normal and abnormal embryonic development of mouse hindlimbs. Hum Exp Toxicol 2014; 34:563-74. [PMID: 25352652 DOI: 10.1177/0960327114555927] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Heat shock proteins (Hsps), which have important biological functions, are a class of highly conserved genetic molecules with the capacity of protecting and promoting cells to repair themselves from damage caused by various stimuli. Our previous studies found that Hsp25, HspB2, HspB3, HspB7, Hsp20, HspB9, HspB10, and Hsp40 may be related to all-trans retinoic acid (atRA)-induced phocomelic and other abnormalities, while HspA12B, HspA14, Trap1, and Hsp105 may be forelimb development-related genes; Grp78 may play an important role in forelimb development. In this study, the embryonic phocomelic, oligodactylic model of both forelimbs and hindlimbs was developed by atRA administered per os to the pregnant mice on gestational day 11, and the expression of 36 members of Hsps family in normal and abnormal development of embryonic hindlimbs was measured by real-time fluorescent quantitative polymerase chain reaction (qRT-PCR). It is found that HspA1L, Hsp22, Hsp10, Hsp60, Hsp47, HspB2, HspB10, HspA12A, Apg1, HspB4, Grp78, and HspB9 probably performs a major function in limb development, and HspA13, Grp94 and Hsp110 may be hindlimb development-related genes.
Collapse
Affiliation(s)
- Zhengli Yan
- Medical School, Hunan Normal University, Changsha, People's Republic of China
| | - Huimiao Wei
- Department of Health Toxicology, Second Military Medical University, Shanghai, People's Republic of China
| | - Chuanlu Ren
- Department of Laboratory, No.100 Hospital of CPLA, Suzhou, People's Republic of China
| | - Shishan Yuan
- Medical School, Hunan Normal University, Changsha, People's Republic of China
| | - Hu Fu
- Medical School, Hunan Normal University, Changsha, People's Republic of China
| | - Yuan Lv
- Medical School, Hunan Normal University, Changsha, People's Republic of China
| | - Yongfei Zhu
- Medical School, Hunan Normal University, Changsha, People's Republic of China
| | - Tianbao Zhang
- Department of Health Toxicology, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Heat shock proteins in the human eye. INTERNATIONAL JOURNAL OF PROTEOMICS 2011; 2010:479571. [PMID: 22084677 PMCID: PMC3200129 DOI: 10.1155/2010/479571] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 11/11/2010] [Accepted: 12/17/2010] [Indexed: 11/22/2022]
Abstract
Heat shock proteins (Hsps) are believed to primarily protect and maintain cell viability under stressful conditions such as those occurring during thermal and oxidative challenges chiefly by refolding and stabilizing proteins. Hsps are found throughout the various tissues of the eye where they are thought to confer protection from disease states such as cataract, glaucoma, and cancer. This minireview summarizes the placement, properties, and roles of Hsps in the eye and aims to provide a better comprehension of their function and involvement in ocular disease pathogenesis.
Collapse
|
6
|
Zhu Y, Zhu J, Wan X, Zhu Y, Zhang T. Gene expression of sHsps, Hsp40 and Hsp60 families in normal and abnormal embryonic development of mouse forelimbs. Toxicol Lett 2010; 193:242-51. [DOI: 10.1016/j.toxlet.2010.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 11/25/2022]
|
7
|
Zhao J, Yoneda M, Inoue Y, Kakizaki H, Ohno-Jinno A, Kataoka T, Iwaki M, Zako M. Expression profile of heat shock protein 108 during retinal development in the chick. Neurosci Lett 2005; 397:10-4. [PMID: 16364543 DOI: 10.1016/j.neulet.2005.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 11/18/2005] [Accepted: 11/28/2005] [Indexed: 10/25/2022]
Abstract
In the developing chick retina, heat shock protein 108 (HSP108), which exhibits transferrin binding activity, has been demonstrated at the mRNA level, while transferrin shows two expression peaks. Here, we investigated the expression profile of HSP108 in the developing chick retina at the protein level. The localization of HSP108 in embryonic days 15 (E15), E18, and postnatal day 2 (P2) chick retina was examined immunohistochemically using monoclonal antibody 9G10 specific for chick HSP108, while the expression levels of HSP108 in developing chick retina from E12 to P2 and adult were measured by Western blot analysis. HSP108 was expressed in the ganglion cell layer, inner nuclear layer, outer plexiform layer, outer nuclear layer, inner segments of photoreceptors and retinal pigment epithelium. Two peaks of HSP108 expression were found at around E13 and E18, respectively. Since the two HSP108 peaks appeared to be correlated with the transferrin expression peaks during retinal development, HSP108 may be associated with iron metabolism during the development of the retina.
Collapse
Affiliation(s)
- Jinsong Zhao
- Department of Ophthalmology, Aichi Medical University, Nagakute, Aichi 480-1195, Japan, and Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Shin DH, Lee E, Kim J, Bae SR, Chung YH, Kim HJ, Lee MH, Cho SS. Distribution of heat shock protein 108 mRNA during the development of the chicken brain. Neurosci Lett 2005; 370:140-5. [PMID: 15488311 DOI: 10.1016/j.neulet.2004.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 08/05/2004] [Accepted: 08/06/2004] [Indexed: 10/26/2022]
Abstract
The developmental expression of heat shock protein 108 (HSP108) mRNA was mapped in chicken brain using in situ hybridization and reverse transcription-polymerase chain reaction (RT-PCR). RT-PCR showed that HSP108 mRNA increased from embryonic day 5 (E5) to 13 (E13), significantly decreased from E17 to E21 and then increased again at the adult stage. In situ hybridization showed that while intense HSP108 positive (HSP108+) signals were localized in the cerebellum from E7 to E14, the intensities of these signals were significantly decreased at E17. However, at the adult stage, HSP108 expression increased in a cell type dependent manner. A decrease in HSP108 mRNA expression during differentiation was also observed in an in vitro study of brain cells treated with nerve growth factor (NGF).
Collapse
Affiliation(s)
- Dong Hoon Shin
- Department of Anatomy, MRC Neuroscience Research Institute, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul 110-799, Korea
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Shin DH, Kim HJ, Kim J, Bae SR, Cho SS. Heat shock protein 108 mRNA expression during chicken retina development. Neurosci Lett 2003; 344:25-8. [PMID: 12781913 DOI: 10.1016/s0304-3940(03)00409-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In a developmental study on the expression of heat shock protein 108 (HSP108) mRNA in the chicken retina, we found different spatial and temporal expressions of HSP108 mRNA in each retinal layer. While intense HSP108 signals were found in the retina neuroblast layer at embryonic day 5 (E5), the ganglion cell population (GC), inner nuclear layer (IN) and pigment epithelium (PE) showed HSP108 expression at E9. At E14, HSP108 signals were reduced versus the previous stages even though signals were still detected in the GC, the IN, the outer nuclear layer and the PE. HSP108 signals were still detectable at the E21 stage, although each retinal layer showed a much differentiated morphology and diminished signal intensity. These results suggest that HSP108 expression might be developmentally regulated throughout eye organogenesis and that it plays a role in ocular development.
Collapse
Affiliation(s)
- Dong Hoon Shin
- Department of Anatomy, Seoul National University College of Medicine, Yongon-Dong 28, Seoul 110-799, South Korea
| | | | | | | | | |
Collapse
|
10
|
Wada H, Kobayashi I, Yamaza H, Matsuo K, Kiyoshima T, Akhtar M, Sakai T, Koyano K, Sakai H. In situ expression of heat shock proteins, Hsc73, Hsj2 and Hsp86 in the developing tooth germ of mouse lower first molar. THE HISTOCHEMICAL JOURNAL 2002; 34:105-9. [PMID: 12495215 DOI: 10.1023/a:1020930228303] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study examined the detailed gene expression pattern of three different heat shock proteins (HSPs), Hsc73, Hsj2, and Hsp86, by means of an in situ hybridization method. Hsc73, Hsj2, and Hsp86 were shown in our previous study to be differentially expressed in the mouse embryonic mandible at day 10.5 (E10.5) gestational age. These HSP genes showed similar expression patterns during development of the mouse lower first molar. HSPs-expressing cells were widely distributed in both the epithelial and underlying ectomesenchymal cells at E10.5, and then were slightly localized at E12 in an area where the tooth germ of the lower first molar is estimated to be formed. A strong expression of HSPs was observed in the tooth germ at E13.5. At the cap stage, HSPs were expressed in the enamel organ and dental papilla. At the bell stage, HSPs were distinctly expressed in the inner enamel epithelium and dental papilla cells facing the inner enamel epithelial layer, which later differentiate into ameloblasts and odontoblasts, respectively. This study is the first report in which Hsc73, Hsj2, and Hsp86 were distinctly expressed in the developing tooth germ, thus suggesting these HSPs are related to the development and differentiation of odontogenic cells.
Collapse
Affiliation(s)
- Hiroko Wada
- Laboratory of Oral Pathology and Medicine, Faculty of Dental Science, Kyushu University 61, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The presence of heat shock proteins HSP-40, HSP-70, and HSc-70 in adult and embryonic chicken lenses were determined. The epithelium, cortex, and nucleus of adult chicken lens were separated and tested for the presence of heat shock proteins (hsps) by western blot, using specific antibodies for HSP-40, HSP-70, and HSc-70. Water soluble (WSF) and water insoluble fractions (WIF) of embryonic chicken lenses were isolated and tested for the presence of HSP-40, HSP-70, and HSc-70 by immunoblot. Embryonic chicken lens sections were also analyzed for the presence of heat shock proteins by immunofluorescence technique. Data obtained from these experiments revealed that HSP-40, HSP-70, and HSc-70 are present in all areas of both adult and embryonic chicken lens. Presence of hsps protein in the deep cortex and nucleus is intriguing as no detectable metabolic activities are reported in this area. However it can be proposed that hsps HSP-40, HSP-70, and HSc-70 can interact with protein of these areas and protect them from stress induced denaturation.
Collapse
Affiliation(s)
- M Bagchi
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
12
|
Liu HC, He Z, Rosenwaks Z. Application of complementary DNA microarray (DNA chip) technology in the study of gene expression profiles during folliculogenesis. Fertil Steril 2001; 75:947-55. [PMID: 11334907 DOI: 10.1016/s0015-0282(01)01706-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Using oligonucleotide microarray (DNA chip)-based hybridization analysis to gain a comprehensive view of gene expression and regulation involved in folliculogenesis. DESIGN Prospective randomized study. SETTING Academic institution. ANIMAL(S) B6D2F1 female mice. INTERVENTION(S) Superovulation. MAIN OUTCOME MEASURE(S) Preantral follicles isolated from day 14 B6D2F-1 mice were stimulated in vitro to form Graafian follicles. Total RNA extracted from the mouse preantral and Graafian follicles were reverse transcribed, labeled with digoxigenin-11-dUTP, and then hybridized with Clontech Atlas mouse cDNA expression arrays for comparison. RESULT(S) Of 588 known studied genes, 39 and 61 were detected in preantral follicles and in Graafian follicles, respectively, and 17 were highly expressed consistently in both preantral and Graafian follicles. Performing clustering analysis, we found that 15 detected genes were down-regulated and 46 were up-regulated as the follicles advanced to mature stages. CONCLUSION(S) We have successfully developed a sensitive DNA chip technology that is able to simultaneously and quantitatively study gene expression profiles in a small number of follicles (1.5-15 follicles). Several folliculogenesis-related genes have been identified. Some of these genes were expressed, indicating that they may be essential for follicle growth and maturation, whereas others were up-regulated only during late follicular development, indicating stage-specific roles.
Collapse
Affiliation(s)
- H C Liu
- Center for Reproductive Medicine and Infertility, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | | | |
Collapse
|
13
|
Bellocq A, Doublier S, Suberville S, Perez J, Escoubet B, Fouqueray B, Puyol DR, Baud L. Somatostatin increases glucocorticoid binding and signaling in macrophages by blocking the calpain-specific cleavage of Hsp 90. J Biol Chem 1999; 274:36891-6. [PMID: 10601241 DOI: 10.1074/jbc.274.52.36891] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Somatostatin has direct anti-inflammatory actions and participates in the anti-inflammatory actions of glucocorticoids, but the mechanisms underlying this regulation remain poorly understood. The objective of this study was to evaluate whether somatostatin increases glucocorticoid responsiveness by up-regulating glucocorticoid receptor (GR) expression and signaling. Somatostatin promoted a time- and dose-dependent increase in [(3)H]dexamethasone binding to RAW 264.7 macrophages. Cell exposure to 10 nM somatostatin for 18 h promoted a 2-fold increase in the number of GR sites per cell without significant modification of the affinity. Analysis of GR heterocomplex components demonstrated that somatostatin increased the level of heat shock protein (Hsp) 90, whereas the level of GR remained almost unchanged. The increase in Hsp 90 was associated with a decrease in the cleavage of its carboxyl-terminal domain. Evidence for the involvement of calpain inhibition in this process was obtained by the demonstration that 1) somatostatin induced a dose-dependent decrease in calpain activity and 2) calpain inhibitors, calpain inhibitor I and calpeptin, both abolished the cleavage of Hsp 90 and induced a dose-dependent increase in [(3)H]dexamethasone binding. Increases in glucocorticoid binding after somatostatin treatment were associated with similar increases in the ability of GR to transactivate a minimal promoter containing two glucocorticoid response elements (GRE) and to interfere with the activation of nuclear factor-kappaB (NF-kappaB). Thus, the present findings indicate that somatostatin increases glucocorticoid binding and signaling by limiting the calpain-specific cleavage of GR-associated Hsp 90. This mechanism may represent a novel target for intervention to increase glucocorticoid responsiveness.
Collapse
Affiliation(s)
- A Bellocq
- Unité INSERM 489, Hôpital Tenon, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Morales AV, Hadjiargyrou M, Díaz B, Hernández-Sánchez C, de Pablo F, de la Rosa EJ. Heat shock proteins in retinal neurogenesis: identification of the PM1 antigen as the chick Hsc70 and its expression in comparison to that of other chaperones. Eur J Neurosci 1998; 10:3237-45. [PMID: 9786217 DOI: 10.1046/j.1460-9568.1998.00332.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
While the role of heat shock proteins under experimental stress conditions is clearly characterized, their expression in unstressed cells and tissues and their functions in normal cell physiology, besides their chaperone action, remain largely undetermined. We report here the identification in chicken of the antigen recognized by the monoclonal antibody PM1 [Hernández-Sánchez et al. (1994) Eur. J. Neurosci., 6,1801-1810] as the noninducible chaperone heat-shock cognate 70 (Hsc70). Its identity was determined by partial peptide sequencing, immuno-crossreactivity and two-dimensional gel-electrophoresis. In addition, we examined its expression during chick embryo retinal neurogenesis. The early widespread Hsc70 immunostaining corresponding to most, if not all, of the neuroepithelial cells becomes restricted to a subpopulation of these cells in the peripheral retina as development proceeds. On the other hand, retinal ganglion cells, differentiating in the opposite central-to-peripheral gradient, retained Hsc70 immunostaining. Other molecular chaperones, the heat-shock proteins Hsp40, Hsp60 and Hsp90, did not seem to compensate the loss of Hsc70. They also showed decreasing immunostaining patterns as neurogenesis proceeds, although distinctive from that of Hsc70, whereas Hsp70 was not detected in the embryonic retina. This precise cellular and developmental regulation of Hsc70, a generally considered constitutive molecular chaperone, in unstressed embryos, together with the expression of other chaperones, provides new tools and a further insight on neural precursor heterogeneity, and suggests possible specific cellular roles of chaperone function during vertebrate neurogenesis.
Collapse
Affiliation(s)
- A V Morales
- Department of Cell and Developmental Biology, Centro de Investigaciones Biológicas CSIC, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Takahashi K, Kubo T, Goomer RS, Amiel D, Kobayashi K, Imanishi J, Teshima R, Hirasawa Y. Analysis of heat shock proteins and cytokines expressed during early stages of osteoarthritis in a mouse model. Osteoarthritis Cartilage 1997; 5:321-9. [PMID: 9497939 DOI: 10.1016/s1063-4584(97)80036-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a debilitating disease of the joints. The joints of affected individuals are characterized by a progressive degeneration of articular cartilage leading to inflammation and pain. The expression of heat shock proteins (HSPs) is a ubiquitous self-protective mechanism of all cells under stress, furthermore, the synovium of osteoarthritic individuals contains high levels of cytokines. This study seeks to establish the role of HSPs and cytokines in OA. METHODS We have investigated the presence of HSPs and cytokines in articular cartilage during early stages of OA in a mouse that is known to develop spontaneous OA lesions (C57 black mouse). The articular cartilage from closely related mice (C57BL/6) was used as control. Messenger RNAs (mRNAs) for HSPs (HSP32, HSP47, HSP60, HSP70, HSP84 and HSP86) and cytokines [interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma)] were detected by reverse transcription-polymerase chain reaction (RT-PCR). RESULTS The mRNA levels of HSP47, HSP70, HSP86, IL-6, and IFN-gamma were up-regulated in the cartilage of C57 black mice, whereas, the level of expression of HSP32, HSP60, HSP84 and IL-1 beta remained unchanged. Furthermore, the expression of IL-1 beta, IL-6, TNF-alpha and IFN-gamma mRNA was associated with expression of HSP60, HSP47, HSP70 and HSP70/HSP86 mRNA, respectively. CONCLUSIONS The findings in this study suggest that chondrocytes are conditioned under non-physiological stress during early stages of OA, In addition, among HSPs, HSP70 was associated with two different highly expressed cytokines in C57 black mice, indicating the possible role of HSP70 as a characteristic indicator of early stage of OA.
Collapse
Affiliation(s)
- K Takahashi
- Department of Orthopaedic Surgery, Kyoto Prefectural University of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|