1
|
Camprodon G, Gabro A, El Ayachi Z, Chopra S, Nout R, Maingon P, Chargari C. Personalized strategies for brachytherapy of cervix cancer. Cancer Radiother 2024; 28:610-617. [PMID: 39395842 DOI: 10.1016/j.canrad.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
Among most tailored approaches in radiation oncology, the development of brachytherapy for the treatment of cervical cancer patients has benefited from various technological innovations. The development of 3D image-guided treatments was the first step for treatment personalization. This breakthrough preceded practice homogenization and validation of predictive dose and volume parameters and prognostic factors. We review some of the most significant strategies that emerged from the ongoing research in order to increase personalization in uterovaginal brachytherapy. A better stratification based on patients and tumors characteristics may lead to better discriminate candidates for intensification or de-escalation strategies, in order to still improve patient outcome while minimizing the risk of treatment-related side effects.
Collapse
Affiliation(s)
- Guillaume Camprodon
- Department of Radiation Oncology, hôpital Pitié Salpêtrière, Assistance publique-hôpitaux de Paris, Sorbonne université, Paris, France
| | - Alexandra Gabro
- Department of Radiation Oncology, hôpital Pitié Salpêtrière, Assistance publique-hôpitaux de Paris, Sorbonne université, Paris, France
| | - Zineb El Ayachi
- Department of Radiation Oncology, hôpital Pitié Salpêtrière, Assistance publique-hôpitaux de Paris, Sorbonne université, Paris, France
| | - Supriya Chopra
- Department of Radiation Oncology and Medical Physics, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Remi Nout
- Department of Radiation Oncology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Philippe Maingon
- Department of Radiation Oncology, hôpital Pitié Salpêtrière, Assistance publique-hôpitaux de Paris, Sorbonne université, Paris, France
| | - Cyrus Chargari
- Department of Radiation Oncology, hôpital Pitié Salpêtrière, Assistance publique-hôpitaux de Paris, Sorbonne université, Paris, France.
| |
Collapse
|
2
|
Prisciandaro J, Zoberi JE, Cohen G, Kim Y, Johnson P, Paulson E, Song W, Hwang KP, Erickson B, Beriwal S, Kirisits C, Mourtada F. AAPM Task Group Report 303 endorsed by the ABS: MRI Implementation in HDR Brachytherapy-Considerations from Simulation to Treatment. Med Phys 2022; 49:e983-e1023. [PMID: 35662032 DOI: 10.1002/mp.15713] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 04/11/2022] [Accepted: 05/05/2022] [Indexed: 11/05/2022] Open
Abstract
The Task Group (TG) on Magnetic Resonance Imaging (MRI) Implementation in High Dose Rate (HDR) Brachytherapy - Considerations from Simulation to Treatment, TG 303, was constituted by the American Association of Physicists in Medicine's (AAPM's) Science Council under the direction of the Therapy Physics Committee, the Brachytherapy Subcommittee, and the Working Group on Brachytherapy Clinical Applications. The TG was charged with developing recommendations for commissioning, clinical implementation, and on-going quality assurance (QA). Additionally, the TG was charged with describing HDR brachytherapy (BT) workflows and evaluating practical consideration that arise when implementing MR imaging. For brevity, the report is focused on the treatment of gynecologic and prostate cancer. The TG report provides an introduction and rationale for MRI implementation in BT, a review of previous publications on topics including available applicators, clinical trials, previously published BT related TG reports, and new image guided recommendations beyond CT based practices. The report describes MRI protocols and methodologies, including recommendations for the clinical implementation and logical considerations for MR imaging for HDR BT. Given the evolution from prescriptive to risk-based QA,1 an example of a risk-based analysis using MRI-based, prostate HDR BT is presented. In summary, the TG report is intended to provide clear and comprehensive guidelines and recommendations for commissioning, clinical implementation, and QA for MRI-based HDR BT that may be utilized by the medical physics community to streamline this process. This report is endorsed by the American Brachytherapy Society (ABS). This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | | | - Gil'ad Cohen
- Memorial Sloan-Kettering Cancer Center, New York, NY
| | | | - Perry Johnson
- University of Florida Health Proton Therapy Institute, Jacksonville, FL
| | | | | | - Ken-Pin Hwang
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Sushil Beriwal
- Allegheny Health Network Cancer Institute, Pittsburgh, PA
| | | | - Firas Mourtada
- Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Lucia F, Miranda O, Bourbonne V, Martin E, Pradier O, Schick U. Integration of functional imaging in brachytherapy. Cancer Radiother 2021; 26:517-525. [PMID: 34172398 DOI: 10.1016/j.canrad.2021.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/31/2022]
Abstract
Functional imaging allows the evaluation of numerous biological properties that could be considered at all steps of the therapeutic management of patients treated with brachytherapy. Indeed, it enables better initial staging of the disease, and some parameters may also be used as predictive biomarkers for treatment response, allowing better selection of patients eligible for brachytherapy. It may also improve the definition of target volumes with the aim of dose escalations by dose-painting. Finally, it could be useful during the follow-up to assess response to treatment. In this review, we report how functional imaging is integrated at the present time during the brachytherapy procedure, and what are its potential future contributions in the main tumour locations where brachytherapy is recommended. Functional imaging has great potential in the contact of brachytherapy, but still, several issues remain to be resolved before integrating it into clinical practice, especially as a biomarker or in dose painting strategies.
Collapse
Affiliation(s)
- F Lucia
- Service de radiothérapie, CHRU Morvan, 2, avenue Foch, 29609 Brest cedex, France.
| | - O Miranda
- Service de radiothérapie, CHRU Morvan, 2, avenue Foch, 29609 Brest cedex, France
| | - V Bourbonne
- Service de radiothérapie, CHRU Morvan, 2, avenue Foch, 29609 Brest cedex, France
| | - E Martin
- Service de radiothérapie, CHRU Morvan, 2, avenue Foch, 29609 Brest cedex, France
| | - O Pradier
- Service de radiothérapie, CHRU Morvan, 2, avenue Foch, 29609 Brest cedex, France
| | - U Schick
- Service de radiothérapie, CHRU Morvan, 2, avenue Foch, 29609 Brest cedex, France
| |
Collapse
|
4
|
Rosa C, Pizzi AD, Augurio A, Caravatta L, DI Tommaso M, Mincuzzi E, Cinalli S, Basilico R, Porreca A, DI Nicola M, Genovesi D. Volume Delineation in Cervical Cancer With T2 and Diffusion-weighted MRI: Agreement on Volumes Between Observers. In Vivo 2021; 34:1981-1986. [PMID: 32606170 DOI: 10.21873/invivo.11995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 01/25/2023]
Abstract
AIM To delineate cervical cancer gross tumor volume (GTV) on T2-magnetic resonance imaging (MRI) and apparent diffusion coefficient (ADC) maps, assessing volumes and inter-observer agreement between two observers. PATIENTS AND METHODS A radiologist and a radiation oncologist delineated GTV on T2 (T2GTV) and ADC (ADCGTV) sequences. Dice similarity index (DICE) and Bland-Altman analysis were used to estimated concordance. RESULTS Mean T2GTV and ADCGTV volumes were 43.84±71.47 cc and 37.28±68.92 cc according to the radiologist, and 43.4±70.44 cc and 36.65±69.21 cc according to the radiation oncologist. ADC led to statistically significantly smaller volumes compared to T2. The mean DICE index was 0.86 for T2GTV and 0.84 for ADCGTV The Bland-Altman plots globally showed concordance. CONCLUSION GTV delineation was smaller in the ADC maps compared to T2-MRI, reaching an almost perfect agreement between observers. Thanks to this acceptable variability, adding functional imaging might provide more information for tumor delineation, improving reproducibility for image-guided adaptive radiotherapy.
Collapse
Affiliation(s)
- Consuelo Rosa
- Department of Radiation Oncology, SS. Annunziata Hospital, G. D'Annunzio University, Chieti, Italy .,Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio University, Chieti, Italy
| | - Andrea Delli Pizzi
- Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio University, Chieti, Italy.,Department of Radiology, SS. Annunziata Hospital, G. D'Annunzio University, Chieti, Italy
| | - Antonietta Augurio
- Department of Radiation Oncology, SS. Annunziata Hospital, G. D'Annunzio University, Chieti, Italy
| | - Luciana Caravatta
- Department of Radiation Oncology, SS. Annunziata Hospital, G. D'Annunzio University, Chieti, Italy
| | - Monica DI Tommaso
- Department of Radiation Oncology, SS. Annunziata Hospital, G. D'Annunzio University, Chieti, Italy
| | - Erica Mincuzzi
- Department of Radiology, SS. Annunziata Hospital, G. D'Annunzio University, Chieti, Italy
| | | | - Raffaella Basilico
- Department of Radiology, SS. Annunziata Hospital, G. D'Annunzio University, Chieti, Italy
| | | | - Marta DI Nicola
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, G. D'Annunzio University, Chieti, Italy
| | - Domenico Genovesi
- Department of Radiation Oncology, SS. Annunziata Hospital, G. D'Annunzio University, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio University, Chieti, Italy
| |
Collapse
|
5
|
A prospective comparative dosimetric study between diffusion weighted MRI (DWI) & T2-weighted MRI (T2W) for target delineation and planning in cervical cancer brachytherapy. Rep Pract Oncol Radiother 2020; 25:1011-1016. [PMID: 33299382 DOI: 10.1016/j.rpor.2020.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/21/2020] [Accepted: 08/17/2020] [Indexed: 11/21/2022] Open
Abstract
Aim To evaluate the difference between GTVBT (Gross Tumor Volume at Brachytherapy) and HR CTV (High Risk Clinical Tumor Volume) delineated with DWI and T2W MRI. To evaluate doses to organs at risk and targets from plans generated using T2W and DWI. Background Functional imaging with DWI can improve cervical tumor distinction as it is more sensitive than T2W MRI even in detecting parametrial invasion. This study does a dosimetric comparison between a T2W and DWI based plan. Methods Fifty carcinoma cervix patients were subjected to MRI based brachytherapy. T2W and a diffusion weighted sequence were acquired. Target delineation and brachytherapy planning was done on both T2W and DWI. Standard DVH parameters were recorded and the treatment was given using the plan generated from T2W images. Results GTVBT and HRCTV contours on DWI were different when compared with T2W. Mean GTVBT volume on T2W and DWI was 5.25 and 5.23, respectively (p value 0.8). Mean HRCTV on T2W and DWI was 28.3 and 27 cc, respectively (p value 0.003). Planning on the above volumes resulted in a superior coverage in terms of HRCTV D90 and D100 for DWI based plan, HRCTV D90 - 735.1 and 741 cGy for T2W and DWI, respectively (p value 0.006), HRCTV D100 - 441.05 and 444.5 for T2W and DWI plans, respectively (p value = 0.006). Doses to the OAR were not significantly increased. Conclusion GEC ESTRO based contouring guidelines cover all the functionally abnormal areas on DWI. DWI should only be used as a supplement to T2W for contouring target volumes.
Collapse
|
6
|
Incorporating Magnetic Resonance Imaging (MRI) Based Radiation Therapy Response Prediction into Clinical Practice for Locally Advanced Cervical Cancer Patients. Semin Radiat Oncol 2020; 30:291-299. [DOI: 10.1016/j.semradonc.2020.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Kumar R, Kala P, Narayanan GS, Vishwanathan B, Narayanan S, Mandal S, Rao A, Gowda G. Evaluation and evolution of apparent diffusion coefficient (ADC) in image-guided adaptive brachytherapy (IGABT) for cervical cancer. Brachytherapy 2020; 20:112-117. [PMID: 32928683 DOI: 10.1016/j.brachy.2020.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Image-guided adaptive brachytherapy (IGABT) recently has shown excellent clinical outcomes with superior local control and less toxicity. For IGABT, T2W (T2-weighted) MRI is the gold standard. However, studies have shown that target delineation with the same results in uncertainties, poor interobserver variabilities, and low conformity indices for high-risk clinical target volume contours. In this study, we investigate the role of diffusion-weighted imaging-derived apparent diffusion coefficient (ADC) maps to aid in IGABT. We also evaluated ADC from the baseline to brachytherapy. METHODS AND MATERIALS Thirty selected patients were enrolled for this study, and two MRIs were taken at diagnosis and before brachytherapy. Patients were divided into two groups, Group 1 being patients with parametrial involvement before external beam radiotherapy and no parametrial involvement before brachytherapy. Group 2 included patients with parametrial involvement before external beam radiotherapy and persistent parametrial involvement before brachytherapy. ADC was measured at the center, edge, and 1 cm from the edge. RESULTS The measured ADC increased from diagnosis to brachytherapy, and this increase was more for the patients in Group 1 than in Group 2. The mean TDadc (diagnosis ADC, center), TEadc (tumor edge ADC diagnosis), and T1cmDadc (1 cm from edge at diagnosis) were 0.884, 1.45, and 1.9 × 10-3 mm2/s, respectively. The TBadc (ADC at brachytherapy, center), TEBadc (tumor edge ADC at brachytherapy), and TE1cmBadc (1 cm from edge brachytherapy) were 1.2, 1.8, and 2.3 × 10-3 mm2/s, respectively, p-value <0.00001. No abnormal ADC was present outside the high-risk clinical target volume contours. CONCLUSION MRI-based IGABT using T2W imaging essentially covers all functionally abnormal zones at brachytherapy. Diffusion-weighted imaging, along with ADC maps, should only be used as a supplement for target delineation.
Collapse
Affiliation(s)
- Rishabh Kumar
- Department Radiation Oncology, Vydehi Institute of Medical Sciences, Bangalore, Karnataka, India.
| | - Prachi Kala
- Department of Radiology, Vydehi Institute of Medical Sciences, Bangalore, Karnataka, India
| | - Geeta S Narayanan
- Department Radiation Oncology, Vydehi Institute of Medical Sciences, Bangalore, Karnataka, India
| | - Bhaskar Vishwanathan
- Department Radiation Oncology, Vydehi Institute of Medical Sciences, Bangalore, Karnataka, India
| | - Sowmya Narayanan
- Department of Radiation Oncology and Radiation Physics, Chief Medical Physicist, Vydehi Institute of Medical Sciences, Bangalore, Karnataka, India
| | - Sanjeet Mandal
- Department Radiation Oncology, Vydehi Institute of Medical Sciences, Bangalore, Karnataka, India
| | - Arpitha Rao
- Department Radiation Oncology, Vydehi Institute of Medical Sciences, Bangalore, Karnataka, India
| | - Gangadharappa Gowda
- Department of Radiology, Vydehi Institute of Medical Sciences, Bangalore, Karnataka, India
| |
Collapse
|
8
|
Kumar T, Achkar S, Haie-Meder C, Chargari C. Curiethérapie guidée par imagerie multimodale : l’exemple du cancer du col utérin. Cancer Radiother 2019; 23:765-772. [DOI: 10.1016/j.canrad.2019.07.145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/08/2019] [Indexed: 11/30/2022]
|
9
|
Tan MBBS, MRCP, FRCR, MD LT, Tanderup PhD K, Kirisits PhD C, de Leeuw PhD A, Nout MD, PhD R, Duke MBBS, FRCR S, Seppenwoolde PhD Y, Nesvacil PhD N, Georg PhD D, Kirchheiner PhD K, Fokdal MD, PhD L, Sturdza MD, FRCPC A, Schmid MD M, Swamidas PhD J, van Limbergen MD, PhD E, Haie-Meder MD C, Mahantshetty MD U, Jürgenliemk-Schulz MD, PhD I, Lindegaard DM, DMSc JC, Pötter MD R. Image-guided Adaptive Radiotherapy in Cervical Cancer. Semin Radiat Oncol 2019; 29:284-298. [DOI: 10.1016/j.semradonc.2019.02.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
Giles SL, Imseeh G, Rivens I, ter Haar GR, Taylor A, deSouza NM. MR guided high intensity focused ultrasound (MRgHIFU) for treating recurrent gynaecological tumours: a pilot feasibility study. Br J Radiol 2019; 92:20181037. [PMID: 31084495 PMCID: PMC6592075 DOI: 10.1259/bjr.20181037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/07/2019] [Accepted: 04/01/2019] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To assess the feasibility of targeting recurrent gynaecological tumours with MR guided high intensity focused ultrasound (MRgHIFU). METHODS 20 patients with recurrent gynaecological tumours were prospectively scanned on a Philips/Profound 3 T Achieva MR/ Sonalleve HIFU system. Gross tumour volume (GTV) and planning target volume (PTV) were delineated on T 2W and diffusion-weighted imaging (DWI). Achievable treatment volumes that (i) assumed bowel and/or urogenital tract preparation could be used to reduce risk of damage to organs-at-risk (TVoptimal), or (ii) assumed no preparations were possible (TVno-prep) were compared with PTV on virtual treatment plans. Patients were considered treatable if TVoptimal ≥ 50 % PTV. RESULTS 11/20 patients (55%) were treatable if preparation strategies were used: nine had central pelvic recurrences, two had tumours in metastatic locations. Treatable volume ranged from 3.4 to 90.3 ml, representing 70 ± 17 % of PTVs. Without preparation, 6/20 (30%) patients were treatable (four central recurrences, two metastatic lesions). Limiting factors were disease beyond reach of the HIFU transducer, and bone obstructing tumour access. DWI assisted tumour outlining, but differences from T 2W imaging in GTV size (16.9 ± 23.0%) and PTV location (3.8 ± 2.8 mm in phase-encode direction) limited its use for treatment planning. CONCLUSIONS Despite variation in size and location within the pelvis, ≥ 50 % of tumour volumes were considered targetable in 55 % patients while avoiding adjacent critical structures. A prospective treatment study will assess safety and symptom relief in a second patient cohort. ADVANCES IN KNOWLEDGE Target size, location and access make MRgHIFU a viable treatment modality for treating symptomatic recurrent gynaecological tumours within the pelvis.
Collapse
Affiliation(s)
- Sharon L Giles
- The CRUK Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden Hospital, London, United Kingdom
| | - Georgios Imseeh
- Department of Gynae-Oncology, The Royal Marsden Hospital, London, United Kingdom
| | - Ian Rivens
- Therapeutic Ultrasound, The Institute of Cancer Research, London, United Kingdom
| | - Gail R ter Haar
- Therapeutic Ultrasound, The Institute of Cancer Research, London, United Kingdom
| | - Alexandra Taylor
- Department of Gynae-Oncology, The Royal Marsden Hospital, London, United Kingdom
| | - Nandita M deSouza
- The CRUK Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
11
|
The Role of Magnetic Resonance Imaging in Brachytherapy. Clin Oncol (R Coll Radiol) 2018; 30:728-736. [DOI: 10.1016/j.clon.2018.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 11/19/2022]
|
12
|
Appropriate magnetic resonance imaging techniques for gross tumor volume delineation in external beam radiation therapy of locally advanced cervical cancer. Oncotarget 2018. [PMID: 29515794 PMCID: PMC5839375 DOI: 10.18632/oncotarget.24071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background Accurate delineation of the gross tumor volumes (GTV) is a prerequisite for precise radiotherapy planning and delivery. Different MRI sequences have different advantages and limitations in their ability to discriminate primary cervical tumor from normal tissue. The purpose of this work is to determine appropriate MRI techniques for GTV delineation for external-beam radiation therapy of locally advanced cervical cancer (LACC). Materials and Methods GTVs were delineated on the MRI, CT, and PET images acquired for 23 LACC patients in treatment positions to obtain GTVs on CT (GTV-CT), on various MRI sequences including T1 (GTV-T1), T2 (GTV-T2), T1 with fat suppression and contrast (GTV-T1F+), DWI-ADC (GTV-ADC) and on PET were generated using the threshold of 40% of maximum SUV (GTV-SUV40%) as well as SUV of 2.5 (GTV-SUV2.5). MRI, CT and PET were registered for comparison. The GTVs defined by MRI were compared using the overlap ratio (OR) and relative volume ratio (RVR). The union of GTV-T2 and GTV-ADC was generated to represent the MRI-based GTV (GTV-MRI). Results The differences between GTV-T2 and other MRI GTVs are significant (P < 0.05). The average ORs for GTV-T1, GTV-T1F+, and GTV-ADC related to GTV-T2 were 86.3%, 81.6%, and 61.6% with the corresponding average RVRs 113.8%, 112.3% and 77.2%, respectively. There is no significant difference between GTV-T1 and GTV-T1F+. GTV-ADC was generally smaller than GTV-T2, however, encompassed suspicious regions that are uncovered in GTV-T2 (up to 16% of GTV-T2) because of different imaging mechanisms. There was significant difference between GTV-MRI, GTV-SUV2.5, GTV-SUV40%, and GTV-CT. On average, GTV-MRI is 18.4% smaller than GTV-CT. Conclusions MRI provides improved visualization of disease over CT or PET for cervical cancer. The GTV from the union of GTV-T2 and GTV-ADC provides a reasonable GTV including tumor region defined anatomically and functionally with MRI and substantially reduces the conventional GTV defined on CT.
Collapse
|
13
|
Lai AYT, Perucho JAU, Xu X, Hui ES, Lee EYP. Concordance of FDG PET/CT metabolic tumour volume versus DW-MRI functional tumour volume with T2-weighted anatomical tumour volume in cervical cancer. BMC Cancer 2017; 17:825. [PMID: 29207964 PMCID: PMC5718076 DOI: 10.1186/s12885-017-3800-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 11/20/2017] [Indexed: 12/29/2022] Open
Abstract
Background 18F–fluoro-deoxyglucose positron emission tomography with computed tomography (FDG PET/CT) has been employed to define radiotherapy targets using a threshold based on the standardised uptake value (SUV), and has been described for use in cervical cancer. The aim of this study was to evaluate the concordance between the metabolic tumour volume (MTV) measured on FDG PET/CT and the anatomical tumour volume (ATV) measured on T2-weighted magnetic resonance imaging (T2W-MRI); and compared with the functional tumour volume (FTV) measured on diffusion-weighted MRI (DW-MRI) in cervical cancer, taking the T2W-ATV as gold standard. Methods Consecutive newly diagnosed cervical cancer patients who underwent FDG PET/CT and DW-MRI were retrospectively reviewed from June 2013 to July 2017. Volumes of interest was inserted to the focal hypermetabolic activity corresponding to the cervical tumour on FDG PET/CT with automated tumour contouring and manual adjustment, based on SUV 20%–80% thresholds of the maximum SUV (SUVmax) to define the MTV20–80, with intervals of 5%. Tumour areas were manually delineated on T2W-MRI and multiplied by slice thickness to calculate the ATV. FTV were derived by manually delineating tumour area on ADC map, multiplied by the slice thickness to determine the FTV(manual). Diffusion restricted areas was extracted from b0 and ADC map using K-means clustering to determine the FTV(semi-automated). The ATVs, FTVs and the MTVs at different thresholds were compared using the mean and correlated using Pearson’s product-moment correlation. Results Twenty-nine patients were evaluated (median age 52 years). Paired difference of mean between ATV and MTV was the closest and not statistically significant at MTV30 (−2.9cm3, −5.2%, p = 0.301). This was less than the differences between ATV and FTV(semi-automated) (25.0cm3, 45.1%, p < 0.001) and FTV(manual) (11.2cm3, 20.1%, p = 0.001). The correlation of MTV30 with ATV was excellent (r = 0.968, p < 0.001) and better than that of the FTVs. Conclusions Our study demonstrated that MTV30 was the only parameter investigated with no statistically significant difference with ATV, had the least absolute difference from ATV, and showed excellent positive correlation with ATV, suggesting its superiority as a functional imaging modality when compared with DW-MRI and supporting its use as a surrogate for ATV for radiotherapy tumour contouring.
Collapse
Affiliation(s)
- Alta Y T Lai
- Department of Radiology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong Special Administrative Region, China
| | - Jose A U Perucho
- Department of Diagnostic Radiology, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Room 406, Block K, 102 Pokfulam Road, High West, Hong Kong Special Administrative Region, China
| | - Xiaopei Xu
- Department of Diagnostic Radiology, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Room 406, Block K, 102 Pokfulam Road, High West, Hong Kong Special Administrative Region, China
| | - Edward S Hui
- Department of Diagnostic Radiology, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Room 406, Block K, 102 Pokfulam Road, High West, Hong Kong Special Administrative Region, China
| | - Elaine Y P Lee
- Department of Diagnostic Radiology, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Room 406, Block K, 102 Pokfulam Road, High West, Hong Kong Special Administrative Region, China.
| |
Collapse
|
14
|
Diffusion-weighted MRI in image-guided adaptive brachytherapy: Tumor delineation feasibility study and comparison with GEC-ESTRO guidelines. Brachytherapy 2017; 16:956-963. [DOI: 10.1016/j.brachy.2017.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/14/2017] [Accepted: 05/31/2017] [Indexed: 12/27/2022]
|
15
|
Rao YJ, Zoberi JE, Kadbi M, Grigsby PW, Cammin J, Mackey SL, Garcia-Ramirez J, Goddu SM, Schwarz JK, Gach HM. Metal artifact reduction in MRI-based cervical cancer intracavitary brachytherapy. Phys Med Biol 2017; 62:3011-3024. [DOI: 10.1088/1361-6560/62/8/3011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Liu Y, Zhong X, Czito BG, Palta M, Bashir MR, Dale BM, Yin FF, Cai J. Four-dimensional diffusion-weighted MR imaging (4D-DWI): a feasibility study. Med Phys 2017; 44:397-406. [PMID: 28121369 DOI: 10.1002/mp.12037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 10/04/2016] [Accepted: 11/23/2016] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Diffusion-weighted Magnetic Resonance Imaging (DWI) has been shown to be a powerful tool for cancer detection with high tumor-to-tissue contrast. This study aims to investigate the feasibility of developing a four-dimensional DWI technique (4D-DWI) for imaging respiratory motion for radiation therapy applications. MATERIALS/METHODS Image acquisition was performed by repeatedly imaging a volume of interest (VOI) using an interleaved multislice single-shot echo-planar imaging (EPI) 2D-DWI sequence in the axial plane. Each 2D-DWI image was acquired with an intermediately low b-value (b = 500 s/mm2 ) and with diffusion-encoding gradients in x, y, and z diffusion directions. Respiratory motion was simultaneously recorded using a respiratory bellow, and the synchronized respiratory signal was used to retrospectively sort the 2D images to generate 4D-DWI. Cine MRI using steady-state free precession was also acquired as a motion reference. As a preliminary feasibility study, this technique was implemented on a 4D digital human phantom (XCAT) with a simulated pancreas tumor. The respiratory motion of the phantom was controlled by regular sinusoidal motion profile. 4D-DWI tumor motion trajectories were extracted and compared with the input breathing curve. The mean absolute amplitude differences (D) were calculated in superior-inferior (SI) direction and anterior-posterior (AP) direction. The technique was then evaluated on two healthy volunteers. Finally, the effects of 4D-DWI on apparent diffusion coefficient (ADC) measurements were investigated for hypothetical heterogeneous tumors via simulations. RESULTS Tumor trajectories extracted from XCAT 4D-DWI were consistent with the input signal: the average D value was 1.9 mm (SI) and 0.4 mm (AP). The average D value was 2.6 mm (SI) and 1.7 mm (AP) for the two healthy volunteers. CONCLUSION A 4D-DWI technique has been developed and evaluated on digital phantom and human subjects. 4D-DWI can lead to more accurate respiratory motion measurement. This has a great potential to improve the visualization and delineation of cancer tumors for radiotherapy.
Collapse
Affiliation(s)
- Yilin Liu
- Medical Physics Graduate Program, Duke University, Durham, NC, 27710, USA
| | - Xiaodong Zhong
- MR R&D Collaborations, Siemens Healthcare, Atlanta, GA, 30354, USA
| | - Brian G Czito
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Manisha Palta
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Mustafa R Bashir
- Department of Radiology, Duke University Medical Center, Durham, NC, 27710, USA.,Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC, 27710, USA
| | - Brian M Dale
- MR R&D Collaborations, Siemens Healthcare, Cary, NC, 27511, USA
| | - Fang-Fang Yin
- Medical Physics Graduate Program, Duke University, Durham, NC, 27710, USA.,Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Jing Cai
- Medical Physics Graduate Program, Duke University, Durham, NC, 27710, USA.,Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
17
|
Tanderup K, Ménard C, Polgar C, Lindegaard JC, Kirisits C, Pötter R. Advancements in brachytherapy. Adv Drug Deliv Rev 2017; 109:15-25. [PMID: 27637454 DOI: 10.1016/j.addr.2016.09.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 06/14/2016] [Accepted: 09/05/2016] [Indexed: 11/17/2022]
Abstract
Brachytherapy is a radiotherapy modality associated with a highly focal dose distribution. Brachytherapy treats the cancer tissue from the inside, and the radiation does not travel through healthy tissue to reach the target as with external beam radiotherapy techniques. The nature of brachytherapy makes it attractive for boosting limited size target volumes to very high doses while sparing normal tissues. Significant developments over the last decades have increased the use of 3D image guided procedures with the utilization of CT, MRI, US and PET. This has taken brachytherapy to a new level in terms of controlling dose and demonstrating excellent clinical outcome. Interests in focal, hypofractionated and adaptive treatments are increasing, and brachytherapy has significant potential to develop further in these directions with current and new treatment indications.
Collapse
Affiliation(s)
- Kari Tanderup
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | - Cynthia Ménard
- Centre Hospitalier de l'Université de Montréal, Montréal and Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Csaba Polgar
- Center of Radiotherapy, National Institute of Oncology, Budapest, Hungary
| | | | - Christian Kirisits
- Department of Radiotherapy, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Richard Pötter
- Department of Radiotherapy, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Park JJ, Kim CK, Park BK. Prognostic value of diffusion-weighted magnetic resonance imaging and 18F-fluorodeoxyglucose-positron emission tomography/computed tomography after concurrent chemoradiotherapy in uterine cervical cancer. Radiother Oncol 2016; 120:507-511. [DOI: 10.1016/j.radonc.2016.02.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 02/02/2016] [Accepted: 02/07/2016] [Indexed: 11/25/2022]
|
19
|
Karki K, Hugo GD, Ford JC, Olsen KM, Saraiya S, Groves R, Weiss E. Estimation of optimal b-value sets for obtaining apparent diffusion coefficient free from perfusion in non-small cell lung cancer. Phys Med Biol 2015; 60:7877-91. [PMID: 26406921 DOI: 10.1088/0031-9155/60/20/7877] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to determine optimal sets of b-values in diffusion-weighted MRI (DW-MRI) for obtaining monoexponential apparent diffusion coefficient (ADC) close to perfusion-insensitive intravoxel incoherent motion (IVIM) model ADC (ADCIVIM) in non-small cell lung cancer. Ten subjects had 40 DW-MRI scans before and during radiotherapy in a 1.5 T MRI scanner. Respiratory triggering was applied to the echo-planar DW-MRI with TR ≈ 4500 ms, TE = 74 ms, eight b-values of 0-1000 μs μm(-2), pixel size = 1.98 × 1.98 mm(2), slice thickness = 6 mm, interslice gap = 1.2 mm, 7 axial slices and total acquisition time ≈6 min. One or more DW-MRI scans together covered the whole tumour volume. Monoexponential model ADC values using various b-value sets were compared to reference-standard ADCIVIM values using all eight b-values. Intra-scan coefficient of variation (CV) of active tumour volumes was computed to compare the relative noise in ADC maps. ADC values for one pre-treatment DW-MRI scan of each of the 10 subjects were computed using b-value pairs from DW-MRI images synthesized for b-values of 0-2000 μs μm(-2) from the estimated IVIM parametric maps and corrupted by various Rician noise levels. The square root of mean of squared error percentage (RMSE) of the ADC value relative to the corresponding ADCIVIM for the tumour volume of the scan was computed. Monoexponential ADC values for the b-value sets of 250 and 1000; 250, 500 and 1000; 250, 650 and 1000; 250, 800 and 1000; and 250-1000 μs μm(-2) were not significantly different from ADCIVIM values (p > 0.05, paired t-test). Mean error in ADC values for these sets relative to ADCIVIM were within 3.5%. Intra-scan CVs for these sets were comparable to that for ADCIVIM. The monoexponential ADC values for other sets-0-1000; 50-1000; 100-1000; 500-1000; and 250 and 800 μs μm(-2) were significantly different from the ADCIVIM values. From Rician noise simulation using b-value pairs, there was a wide range of acceptable b-value pairs giving small RMSE of ADC values relative to ADCIVIM. The pairs for small RMSE had lower b-values as the noise level increased. ADC values of a two b-value set-250 and 1000 μs μm(-2), and all three b-value sets with 250, 1000 μs μm(-2) and an intermediate value approached ADCIVIM, with relative noise comparable to that of ADCIVIM. These sets may be used in lung tumours using comparatively short scan and post-processing times. Rician noise simulation suggested that the b-values in the vicinity of these experimental best b-values can be used with error within an acceptable limit. It also suggested that the optimal sets will have lower b-values as the noise level becomes higher.
Collapse
Affiliation(s)
- Kishor Karki
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Haack S, Tanderup K, Kallehauge JF, Mohamed SMI, Lindegaard JC, Pedersen EM, Jespersen SN. Diffusion-weighted magnetic resonance imaging during radiotherapy of locally advanced cervical cancer--treatment response assessment using different segmentation methods. Acta Oncol 2015. [PMID: 26217984 DOI: 10.3109/0284186x.2015.1062545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Diffusion-weighted magnetic resonance imaging (DW-MRI) and the derived apparent diffusion coefficient (ADC) value has potential for monitoring tumor response to radiotherapy (RT). Method used for segmentation of volumes with reduced diffusion will influence both volume size and observed distribution of ADC values. This study evaluates: 1) different segmentation methods; and 2) how they affect assessment of tumor ADC value during RT. MATERIAL AND METHODS Eleven patients with locally advanced cervical cancer underwent MRI three times during their RT: prior to start of RT (PRERT), two weeks into external beam RT (WK2RT) and one week prior to brachytherapy (PREBT). Volumes on DW-MRI were segmented using three semi-automatic segmentation methods: "cluster analysis", "relative signal intensity (SD4)" and "region growing". Segmented volumes were compared to the gross tumor volume (GTV) identified on T2-weighted MR images using the Jaccard similarity index (JSI). ADC values from segmented volumes were compared and changes of ADC values during therapy were evaluated. RESULTS Significant difference between the four volumes (GTV, DWIcluster, DWISD4 and DWIregion) was found (p < 0.01), and the volumes changed significantly during treatment (p < 0.01). There was a significant difference in JSI among segmentation methods at time of PRERT (p < 0.016) with region growing having the lowest JSIGTV (mean± sd: 0.35 ± 0.1), followed by the SD4 method (mean± sd: 0.50 ± 0.1) and clustering (mean± sd: 0.52 ± 0.3). There was no significant difference in mean ADC value compared at same treatment time. Mean tumor ADC value increased significantly (p < 0.01) for all methods across treatment time. CONCLUSION Among the three semi-automatic segmentations of hyper-intense intensities on DW-MR images implemented, cluster analysis and relative signal thresholding had the greatest similarity to the clinical tumor volume. Evaluation of mean ADC value did not depend on segmentation method.
Collapse
Affiliation(s)
- Søren Haack
- a Department of Clinical Engineering , Aarhus University Hospital , Aarhus , Denmark
- b Departmant of Oncology, Aarhus University Hospital , Aarhus , Denmark
| | - Kari Tanderup
- b Departmant of Oncology, Aarhus University Hospital , Aarhus , Denmark
| | | | - Sandy Mohamed Ismail Mohamed
- b Departmant of Oncology, Aarhus University Hospital , Aarhus , Denmark
- d Department of Radiotherapy , National Cancer Institute, Cairo University , Cairo , Egypt
| | | | | | - Sune Nørhøj Jespersen
- f CFIN/MindLab, Aarhus University , Aarhus , Denmark
- g Department of Physics and Astronomy , Aarhus University , Aarhus , Denmark
| |
Collapse
|
21
|
Tanderup K, Viswanathan AN, Kirisits C, Frank SJ. Magnetic resonance image guided brachytherapy. Semin Radiat Oncol 2015; 24:181-91. [PMID: 24931089 DOI: 10.1016/j.semradonc.2014.02.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The application of magnetic resonance image (MRI)-guided brachytherapy has demonstrated significant growth during the past 2 decades. Clinical improvements in cervix cancer outcomes have been linked to the application of repeated MRI for identification of residual tumor volumes during radiotherapy. This has changed clinical practice in the direction of individualized dose administration, and resulted in mounting evidence of improved clinical outcome regarding local control, overall survival as well as morbidity. MRI-guided prostate high-dose-rate and low-dose-rate brachytherapies have improved the accuracy of target and organs-at-risk delineation, and the potential exists for improved dose prescription and reporting for the prostate gland and organs at risk. Furthermore, MRI-guided prostate brachytherapy has significant potential to identify prostate subvolumes and dominant lesions to allow for dose administration reflecting the differential risk of recurrence. MRI-guided brachytherapy involves advanced imaging, target concepts, and dose planning. The key issue for safe dissemination and implementation of high-quality MRI-guided brachytherapy is establishment of qualified multidisciplinary teams and strategies for training and education.
Collapse
Affiliation(s)
- Kari Tanderup
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | - Akila N Viswanathan
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women׳s Hospital, Boston, MA
| | - Christian Kirisits
- Department of Radiotherapy, Comprehensive Cancer Center and Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
22
|
Tsien C, Cao Y, Chenevert T. Clinical applications for diffusion magnetic resonance imaging in radiotherapy. Semin Radiat Oncol 2015; 24:218-26. [PMID: 24931097 DOI: 10.1016/j.semradonc.2014.02.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In this article, we review the clinical applications of diffusion magnetic resonance imaging (MRI) in the radiotherapy treatment of several key clinical sites, including those of the central nervous system, the head and neck, the prostate, and the cervix. Diffusion-weighted MRI (DWI) is an imaging technique that is rapidly gaining widespread acceptance owing to its ease and wide availability. DWI measures the mobility of water within tissue at the cellular level without the need of any exogenous contrast agent. For radiotherapy treatment planning, DWI improves upon conventional imaging techniques, by better characterization of tumor tissue properties required for tumor grading, diagnosis, and target volume delineation. Because DWI is also a sensitive marker for alterations in tumor cellularity, it has potential clinical applications in the early assessment of treatment response following radiation therapy.
Collapse
Affiliation(s)
- Christina Tsien
- Department of Radiation Oncology, University of Michigan Hospital and Health Systems, Ann Arbor, MI.
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan Hospital and Health Systems, Ann Arbor, MI
| | - Thomas Chenevert
- Department of Radiology, University of Michigan Hospital and Health Systems, Ann Arbor, MI
| |
Collapse
|
23
|
Fu C, Feng X, Bian D, Zhao Y, Fang X, Du W, Wang L, Wang X. Simultaneous changes of magnetic resonance diffusion-weighted imaging and pathological microstructure in locally advanced cervical cancer caused by neoadjuvant chemotherapy. J Magn Reson Imaging 2014; 42:427-35. [PMID: 25328994 DOI: 10.1002/jmri.24779] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 09/29/2014] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To investigate the changes to diffusion-weighted imaging (DWI) correlated with histopathology after neoadjuvant chemotherapy (NACT) in patients with locally advanced cervical cancer (LACC). MATERIALS AND METHODS Thirty-three patients with LACC were examined with 3T magnetic resonance imaging (MRI) with DWI and apparent diffusion coefficient (ADC) maps. MRIs were performed for each patient at three timepoints: before the first NACT, 2 weeks after the first NACT, and 2 weeks after the second NACT. Uterine cervical specimens were collected at the same timepoints. Specimens were stained for tumor cell density, proliferating cell nuclear antigen (PCNA), and aquaporin 1 (AQP1). Treatment responses were classified as the effective group (complete and partial response) and the ineffective group (stable and progressive disease). RESULTS The ADC value of the effective group after the first chemotherapy was higher than that before chemotherapy (P = 0.002), and expressions of three pathological indicators (tumor cell density, PCNA, and AQP1) significantly decreased after the first NACT compared with those prechemotherapy (P < 0.001). Changes of PCNA expression were negatively correlated with changes of ADC values after the first NACT in the effective group (r = -0.56, P = 0.03). Changes of cellular density were negatively correlated with changes of ADC values from the time of prechemotherapy to after the second NACT in the effective group (r = -0.51, P = 0.04). CONCLUSION The ADC change after successful chemotherapy is closely related with cellular characteristics preceding size reduction. ADC may be used as an early imaging biomarker of NACT response in LACC.
Collapse
Affiliation(s)
- Chun Fu
- Department of Gynecology and Obstetrics, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xiaoyan Feng
- Department of Gynecology and Obstetrics, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Dujun Bian
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yan Zhao
- Department of Gynecology and Obstetrics, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xiaoling Fang
- Department of Gynecology and Obstetrics, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Wanping Du
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Lan Wang
- Department of Research, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xiangquan Wang
- Department of Gynecology and Obstetrics, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
24
|
Srivastava A, Datta NR. Brachytherapy in cancer cervix: Time to move ahead from point A? World J Clin Oncol 2014; 5:764-74. [PMID: 25302176 PMCID: PMC4129539 DOI: 10.5306/wjco.v5.i4.764] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/28/2014] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Brachytherapy forms an integral part of the radiation therapy in cancer cervix. The dose prescription for intracavitary brachytherapy (ICBT) in cancer cervix is based on Tod and Meredith's point A and has been in practice since 1938. This was proposed at a time when accessibility to imaging technology and dose computation facilities was limited. The concept has been in practice worldwide for more than half a century and has been the fulcrum of all ICBT treatments, strategies and outcome measures. The method is simple and can be adapted by all centres practicing ICBT in cancer cervix. However, with the widespread availability of imaging techniques, clinical use of different dose-rates, availability of a host of applicators fabricated with image compatible materials, radiobiological implications of dose equivalence and its impact on tumour and organs at risk; more and more weight is being laid down on individualised image based brachytherapy. Thus, computed tomography, magnetic-resonance imaging and even positron emission computerized tomography along with brachytherapy treatment planning system are being increasingly adopted with promising outcomes. The present article reviews the evolution of dose prescription concepts in ICBT in cancer cervix and brings forward the need for image based brachytherapy to evaluate clinical outcomes. As is evident, a gradual transition from "point" based brachytherapy to "profile" based image guided brachytherapy is gaining widespread acceptance for dose prescription, reporting and outcome evaluation in the clinical practice of ICBT in cancer cervix.
Collapse
|
25
|
Haack S, Kallehauge JF, Jespersen SN, Lindegaard JC, Tanderup K, Pedersen EM. Correction of diffusion-weighted magnetic resonance imaging for brachytherapy of locally advanced cervical cancer. Acta Oncol 2014; 53:1073-8. [PMID: 25017378 DOI: 10.3109/0284186x.2014.938831] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Geometrical distortion is a major obstacle for the use of echo planar diffusion-weighted magnetic resonance imaging (DW-MRI) in planning of radiotherapy. This study compares geometrical distortion correction methods of DW-MRI at time of brachytherapy (BT) in locally advanced cervical cancer patients. MATERIAL AND METHODS In total 21 examinations comprising DW-MRI, dual gradient echo (GRE) for B₀ field map calculation and T2-weighted (T2W) fat-saturated MRI of eight patients with locally advanced cervical cancer were acquired during BT with a plastic tandem and ring applicator in situ. The ability of B0 field map correction (B₀M) and deformable image registration (DIR) to correct DW-MRI geometric image distortion was compared to the non-corrected DW-MRI including evaluation of apparent diffusion coefficient (ADC) for the gross tumor volume (GTV). RESULTS Geometrical distortion correction decreased tandem displacement from 3.3 ± 0.9 mm (non-corrected) to 2.9 ± 1.0 mm (B₀M) and 1.9 ± 0.6 mm (DIR), increased mean normalized cross-correlation from 0.69 ± 0.1 (non- corrected) to 0.70 ± 0.10 (B₀M) and 0.77 ± 0.1 (DIR), and increased the Jaccard similarity coefficient from 0.72 ± 0.1 (non-corrected) to 0.73 ± 0.06 (B₀M) and 0.77 ± 0.1 (DIR). For all parameters only DIR corrections were significant (p < 0.05). ADC of the GTV did not change significantly with either correction method. CONCLUSION DIR significantly improved geometrical accuracy of DW-MRI, with remaining residual uncertainties of less than 2 mm, while no significant improvement was seen using B₀ field map correction.
Collapse
Affiliation(s)
- Søren Haack
- Department of Clinical Engineering, Aarhus University Hospital , Aarhus , Denmark
| | | | | | | | | | | |
Collapse
|
26
|
Wang W, Dumoulin CL, Viswanathan AN, Tse ZTH, Mehrtash A, Loew W, Norton I, Tokuda J, Seethamraju RT, Kapur T, Damato AL, Cormack RA, Schmidt EJ. Real-time active MR-tracking of metallic stylets in MR-guided radiation therapy. Magn Reson Med 2014; 73:1803-11. [PMID: 24903165 DOI: 10.1002/mrm.25300] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/01/2014] [Accepted: 05/02/2014] [Indexed: 11/10/2022]
Abstract
PURPOSE To develop an active MR-tracking system to guide placement of metallic devices for radiation therapy. METHODS An actively tracked metallic stylet for brachytherapy was constructed by adding printed-circuit micro-coils to a commercial stylet. The coil design was optimized by electromagnetic simulation, and has a radio-frequency lobe pattern extending ∼5 mm beyond the strong B0 inhomogeneity region near the metal surface. An MR-tracking sequence with phase-field dithering was used to overcome residual effects of B0 and B1 inhomogeneities caused by the metal, as well as from inductive coupling to surrounding metallic stylets. The tracking system was integrated with a graphical workstation for real-time visualization. The 3 Tesla MRI catheter-insertion procedures were tested in phantoms and ex vivo animal tissue, and then performed in three patients during interstitial brachytherapy. RESULTS The tracking system provided high-resolution (0.6 × 0.6 × 0.6 mm(3) ) and rapid (16 to 40 frames per second, with three to one phase-field dithering directions) catheter localization in phantoms, animals, and three gynecologic cancer patients. CONCLUSION This is the first demonstration of active tracking of the shaft of metallic stylet in MR-guided brachytherapy. It holds the promise of assisting physicians to achieve better targeting and improving outcomes in interstitial brachytherapy.
Collapse
Affiliation(s)
- Wei Wang
- Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Radiation Oncology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kertzscher G, Andersen CE, Tanderup K. Adaptive error detection for HDR/PDR brachytherapy: Guidance for decision making during real-time in vivo
point dosimetry. Med Phys 2014; 41:052102. [DOI: 10.1118/1.4870438] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
28
|
Schmid MP, Fidarova E, Pötter R, Petric P, Bauer V, Woehs V, Georg P, Kirchheiner K, Berger D, Kirisits C, Dörr W, Dimopoulos JCA. Magnetic resonance imaging for assessment of parametrial tumour spread and regression patterns in adaptive cervix cancer radiotherapy. Acta Oncol 2013; 52:1384-90. [PMID: 23957566 DOI: 10.3109/0284186x.2013.818251] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate the impact of magnetic resonance imaging (MRI)-morphologic differences in parametrial infiltration on tumour response during primary radiochemotherapy in cervical cancer. MATERIAL AND METHODS Eighty-five consecutive cervical cancer patients with FIGO stages IIB (n = 59) and IIIB (n = 26), treated by external beam radiotherapy (± chemotherapy) and image-guided adaptive brachytherapy, underwent T2-weighted MRI at the time of diagnosis and at the time of brachytherapy. MRI patterns of parametrial tumour infiltration at the time of diagnosis were assessed with regard to predominant morphology and maximum extent of parametrial tumour infiltration and were stratified into five tumour groups (TG): 1) expansive with spiculae; 2) expansive with spiculae and infiltrating parts; 3) infiltrative into the inner third of the parametrial space (PM); 4) infiltrative into the middle third of the PM; and 5) infiltrative into the outer third of the PM. MRI at the time of brachytherapy was used for identifying presence (residual vs. no residual disease) and signal intensity (high vs. intermediate) of residual disease within the PM. Left and right PM of each patient were evaluated separately at both time points. The impact of the TG on tumour remission status within the PM was analysed using χ(2)-test and logistic regression analysis. RESULTS In total, 170 PM were analysed. The TG 1, 2, 3, 4, 5 were present in 12%, 11%, 35%, 25% and 12% of the cases, respectively. Five percent of the PM were tumour-free. Residual tumour in the PM was identified in 19%, 68%, 88%, 90% and 85% of the PM for the TG 1, 2, 3, 4, and 5, respectively. The TG 3-5 had significantly higher rates of residual tumour in the PM in comparison to TG 1 + 2 (88% vs. 43%, p < 0.01). CONCLUSION MRI-morphologic features of PM infiltration appear to allow for prediction of tumour response during external beam radiotherapy and chemotherapy. A predominantly infiltrative tumour spread at the time of diagnosis resulted in a significantly higher rate of residual tumour in the PM at the time of brachytherapy in comparison to a predominantly expansive tumour spread.
Collapse
Affiliation(s)
- Maximilian P Schmid
- Department of Radiotherapy, Comprehensive Cancer Center, Medical University of Vienna , Vienna , Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ravn S, Holmberg M, Sørensen P, Frøkjær JB, Carl J. Differences in supratentorial white matter diffusion after radiotherapy--new biomarker of normal brain tissue damage? Acta Oncol 2013; 52:1314-9. [PMID: 23981047 DOI: 10.3109/0284186x.2013.812797] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Therapy-induced injury to normal brain tissue is a concern in the treatment of all types of brain tumours. The purpose of this study was to investigate if magnetic resonance diffusion tensor imaging (DTI) could serve as a potential biomarker for the assessment of radiation-induced long-term white matter injury. MATERIAL AND METHODS DTI- and T1-weighted images of the brain were obtained in 19 former radiotherapy patients [nine men and 10 women diagnosed with astrocytoma (4), pituitary adenoma (6), meningioma (8) and craniopharyngioma (1), average age 57.8 (range 35-71) years]. Average time from radiotherapy to DTI scan was 4.6 (range 2.0-7.1) years. NordicICE software (NIC) was used to calculate apparent diffusion coefficient maps (ADC-maps). The co-registration between T1 images and ADC-maps were done using the auto function in NIC. The co-registration between the T1 images and the patient dose plans were done using the auto function in the treatment planning system Eclipse from Varian. Regions of interest were drawn on the T1-weighted images in NIC based on isocurves from Eclipse. Data was analysed by t-test. Estimates are given with 95% CI. RESULTS A mean ADC difference of 4.6(0.3;8.9)× 10(-5) mm(2)/s, p = 0.03 was found between paired white matter structures with a mean dose difference of 31.4 Gy. Comparing the ADC-values of the areas with highest dose from the paired data (dose > 33 Gy) with normal white matter (dose < 5 Gy) resulted in a mean dose difference of 44.1 Gy and a mean ADC difference of 7.87(3.15;12.60)× 10(-5) mm(2)/s, p = 0.003. Following results were obtained when looking at differences between white matter mean ADC in average dose levels from 5 to 55 Gy in steps of 10 Gy with normal white matter mean ADC: 5 Gy; 1.91(-1.76;5.58)× 10(-5) mm(2)/s, p = 0.29; 15 Gy; 5.81(1.53;10.11)× 10(-5) mm(2)/s, p = 0.01; 25 Gy; 5.80(2.43;9.18)× 10(-5) mm(2)/s, p = 0.002; 35 Gy; 5.93(2.89;8.97)× 10(-5) mm(2)/s, p = 0.0007; 45 Gy; 4.32(-0.24;8.89)× 10(-5) mm(2)/s, p = 0.06; 55 Gy; -4.04(-14.96;6.89)× 10(-5) mm(2)/s, p = 0.39. CONCLUSION The results indicate that the structural integrity of white matter, assessed by ADC-values based on DTI, undergoes changes after radiation therapy starting as early as total dose levels between 5 and 15 Gy.
Collapse
Affiliation(s)
- Søren Ravn
- Department of Radiology, Aalborg University Hospital , Aalborg , Denmark
| | | | | | | | | |
Collapse
|
30
|
Lindegaard JC, Fokdal LU, Nielsen SK, Juul-Christensen J, Tanderup K. MRI-guided adaptive radiotherapy in locally advanced cervical cancer from a Nordic perspective. Acta Oncol 2013; 52:1510-9. [PMID: 23962242 DOI: 10.3109/0284186x.2013.818253] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The first Nordic protocol for three-dimensional (3D) planned radiotherapy in locally advanced cervical cancer was the prospective NOCECA study (1994-2000). NOCECA consisted of computed tomography (CT)-based 3D conformal external beam radiotherapy (EBRT) with a simultaneous integrated boost (SIB) to the primary tumour combined with brachytherapy (BT) based on x-ray imaging. In NOCECA the planning aim was to achieve 80 Gy at point A from EBRT and BT combined. However, the balance of dose between EBRT and BT was determined by tumour size at diagnosis with more EBRT dose given to point A and less by BT in more advanced stages. In 2005 image-guided adaptive brachytherapy (IGABT) based on magnetic resonance imaging (MRI) and optimisation of the BT dose distribution to the remaining tumour and cervix at time of BT (HR CTV) was introduced in Aarhus. EBRT remained like in NOCECA until 2008 when the SIB to the primary tumour was abandoned and IMRT was introduced as routine technique. In this study, we report outcome of our first five-year experience with IGABT using our NOCECA cohort as reference. MATERIAL AND METHODS The NOCECA cohort comprising 99 patients was compared with 140 consecutive patients treated by IGABT. Patients with para-aortic nodes were excluded in NOCECA but were present in 9% of the patients treated with IGABT. No patient in NOCECA received chemotherapy whereas concomitant cisplatin was given to 79% of the IGABT patients. RESULTS With IGABT actuarial local control was 91% at three years. When comparing NOCECA with IGABT overall survival was significantly improved from 63% to 79% (p = 0.005). In parallel, both moderate and severe late morbidity were reduced by about 50% (p = 0.02). CONCLUSION Introduction of IGABT reduced morbidity and generated a very high rate of local control, which likely has improved survival by at least as much as concomitant chemotherapy.
Collapse
|
31
|
Chino J, Secord AA. Image-guided brachytherapy for gynecologic surgeons. Surg Oncol Clin N Am 2013; 22:495-509. [PMID: 23622076 DOI: 10.1016/j.soc.2013.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Brachytherapy is a fundamental component of the definitive treatment of many advanced gynecologic malignancies, most notably cancers of the uterine corpus and cervix, and allows high radiation doses to be delivered to the target while minimizing the normal tissue dose. However, dose specification has been based primarily on points visible on plain radiographs, with limited correlation to a patient's anatomy and extent of disease. Recent advances have allowed more customized volume-based specification of dose, which has allowed improvements in outcomes. This article reviews these advances using cervical cancer as a model, and looks to future directions with this promising treatment.
Collapse
Affiliation(s)
- Junzo Chino
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
32
|
Tanderup K, Nesvacil N, Pötter R, Kirisits C. Uncertainties in image guided adaptive cervix cancer brachytherapy: Impact on planning and prescription. Radiother Oncol 2013; 107:1-5. [DOI: 10.1016/j.radonc.2013.02.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 11/29/2022]
|
33
|
Dimopoulos JCA, Petrow P, Tanderup K, Petric P, Berger D, Kirisits C, Pedersen EM, van Limbergen E, Haie-Meder C, Pötter R. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (IV): Basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy. Radiother Oncol 2012; 103:113-22. [PMID: 22296748 PMCID: PMC3336085 DOI: 10.1016/j.radonc.2011.12.024] [Citation(s) in RCA: 334] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 11/28/2011] [Accepted: 12/28/2011] [Indexed: 12/18/2022]
Abstract
The GYN GEC-ESTRO working group issued three parts of recommendations and highlighted the pivotal role of MRI for the successful implementation of 3D image-based cervical cancer brachytherapy (BT). The main advantage of MRI as an imaging modality is its superior soft tissue depiction quality. To exploit the full potential of MRI for the better ability of the radiation oncologist to make the appropriate choice for the BT application technique and to accurately define the target volumes and the organs at risk, certain MR imaging criteria have to be fulfilled. Technical requirements, patient preparation, as well as image acquisition protocols have to be tailored to the needs of 3D image-based BT. The present recommendation is focused on the general principles of MR imaging for 3D image-based BT. Methods and parameters have been developed and progressively validated from clinical experience from different institutions (IGR, Universities of Vienna, Leuven, Aarhus and Ljubljana) and successfully applied during expert meetings, contouring workshops, as well as within clinical and interobserver studies. It is useful to perform pelvic MRI scanning prior to radiotherapy (“Pre-RT-MRI examination”) and at the time of BT (“BT MRI examination”) with one MR imager. Both low and high-field imagers, as well as both open and close magnet configurations conform to the requirements of 3D image-based cervical cancer BT. Multiplanar (transversal, sagittal, coronal and oblique image orientation) T2-weighted images obtained with pelvic surface coils are considered as the golden standard for visualisation of the tumour and the critical organs. The use of complementary MRI sequences (e.g. contrast-enhanced T1-weighted or 3D isotropic MRI sequences) is optional. Patient preparation has to be adapted to the needs of BT intervention and MR imaging. It is recommended to visualise and interpret the MR images on dedicated DICOM-viewer workstations, which should also assist the contouring procedure. Choice of imaging parameters and BT equipment is made after taking into account aspects of interaction between imaging and applicator reconstruction, as well as those between imaging, geometry and dose calculation. In a prospective clinical context, to implement 3D image-based cervical cancer brachytherapy and to take advantage of its full potential, it is essential to successfully meet the MR imaging criteria described in the present recommendations of the GYN GEC-ESTRO working group.
Collapse
|
34
|
Høyer M, Thor M, Thörnqvist S, Søndergaard J, Lassen-Ramshad Y, Paul Muren L. Advances in radiotherapy: from 2D to 4D. Cancer Imaging 2011; 11 Spec No A:S147-52. [PMID: 22185864 PMCID: PMC3266568 DOI: 10.1102/1470-7330.2011.9036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Imaging techniques are increasingly integrated into modern radiotherapy (RT). Multimodal imaging is used to define the target for RT planning and imaging technology is also being integrated into linear accelerators, with the purpose to ensure delivery of radiation with high geometric accuracy. The integration of imaging in RT calls for a stronger collaboration between diagnostic radiologists and the professions involved in RT.
Collapse
Affiliation(s)
- Morten Høyer
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | | | |
Collapse
|
35
|
Shibuya K, Tsushima Y, Horisoko E, Noda SE, Taketomi-Takahashi A, Ohno T, Amanuma M, Endo K, Nakano T. Blood flow change quantification in cervical cancer before and during radiation therapy using perfusion CT. JOURNAL OF RADIATION RESEARCH 2011; 52:804-811. [PMID: 21959830 DOI: 10.1269/jrr.11079] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The purpose of this study was to quantify the changes of tumor blood flow (BF) in cervical cancer after radiation therapy by using perfusion computed tomography (CT), and to examine the difference between maximum slope (MS) and single-input one-compartment model (SOCM) methods. Fourteen consecutive patients who received definitive radiation therapy for cervical cancer from October 2009 to February 2010 were enrolled in this study. Blood flow (BF) analyses were performed using both MS and SOCM methods. Quantitative BF maps were created using Body Perfusion (Toshiba Medical Systems, Co. Tokyo, Japan). Perfusion color maps were successfully created by the two analytical methods. BF of the tumors was clearly higher than that of normal cervix, making it possible to distinguish tumor tissue from normal cervical tissue. BF of the tumors after 20 Gy of radiation therapy calculated by the MS method was significantly larger than that before treatment (126.9 vs. 72.2 ml/min/100 ml, median; p < 0.05). Although BF calculated by the MS and SOCM methods showed a positive linear correlation (p < 0.001, r = 0.981), BF calculated by the MS method was lower than that obtained by the SOCM method (103.7 vs. 115.1 ml/min/100 ml, p < 0.01). The change of tumor BF in cervical cancer before and after radiation therapy can be monitored by conducting blood flow analysis using perfusion CT. BF by the MS method was lower than that by the SOCM method, but the two analytical methods correlated well. Perfusion CT may have potential in noninvasive monitoring of vascular and oxygenation status and for guiding adaptive therapy.
Collapse
Affiliation(s)
- Kei Shibuya
- Department of Radiation Oncology, Gunma University Graduate school of Medicine, Maebashi, Gunma 371-8511, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Haie-Meder C, Siebert FA, Pötter R. Image guided, adaptive, accelerated, high dose brachytherapy as model for advanced small volume radiotherapy. Radiother Oncol 2011; 100:333-43. [PMID: 21963284 DOI: 10.1016/j.radonc.2011.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 09/15/2011] [Indexed: 11/16/2022]
Abstract
Brachytherapy has consistently provided a very conformal radiation therapy modality. Over the last two decades this has been associated with significant improvements in imaging for brachytherapy applications (prostate, gynecology), resulting in many positive advances in treatment planning, application techniques and clinical outcome. This is emphasized by the increased use of brachytherapy in Europe with gynecology as continuous basis and prostate and breast as more recently growing fields. Image guidance enables exact knowledge of the applicator together with improved visualization of tumor and target volumes as well as of organs at risk providing the basis for very individualized 3D and 4D treatment planning. In this commentary the most important recent developments in prostate, gynecological and breast brachytherapy are reviewed, with a focus on European recent and current research aiming at the definition of areas for important future research. Moreover the positive impact of GEC-ESTRO recommendations and the highlights of brachytherapy physics are discussed what altogether presents a full overview of modern image guided brachytherapy. An overview is finally provided on past and current international brachytherapy publications focusing on "Radiotherapy and Oncology". These data show tremendous increase in almost all research areas over the last three decades strongly influenced recently by translational research in regard to imaging and technology. In order to provide high level clinical evidence for future brachytherapy practice the strong need for comprehensive prospective clinical research addressing brachytherapy issues is high-lighted.
Collapse
|
37
|
Rylander S, Thörnqvist S, Haack S, Pedersen EM, Muren LP. Intensity profile based measurement of prostate gold markers influence on 1.5 and 3T diffusion-weighted MR images. Acta Oncol 2011; 50:866-72. [PMID: 21767186 DOI: 10.3109/0284186x.2011.590523] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AND PURPOSE In this study the influence of fiducial markers (FMs) on diffusion-weighted (DW) magnetic resonance images was investigated by measuring the intensity variations due to the artefact from the FM image reconstruction. MATERIAL AND METHODS DW- and reference T1W images were acquired of an Agar-gel phantom containing two fixed cylindrical FMs, with a 1.5- and 3T MR scanner. The center of gravity (CoG) positions of the manually segmented FM artefacts (FMA) and the size of FMAs in x-, y- and z direction were measured in the two corresponding image sets, based on the intensity changes caused by the FM reconstruction. Also, a similarity measure, the Dice similarity coefficient (DSC), of the segmented FMAs in the two image sets was calculated. RESULTS The mean shift of the CoG of the manually segmented FMAs in the phase encoding (PE) and the two orthogonal directions, respectively, was: 1.5T/3T; 0.3 ± 0.1/0.5 ± 0.3 cm and 1.5T/3T; 0.1 ± 0.1/0.1 ± 0.1 cm. The largest shift was observed in the 3T DW images for FMs aligned with the long axis orthogonal to the PE direction (0.9 ± 0.1 cm). The mean size of the FMA in the PE- and the two orthogonal directions, respectively, was: 1.5T/3T; 1.7 ± 0.5/1.3 ± 0.1 cm, and 1.5T/3T; 0.9 ± 0.3/1.0 ± 0.2 cm. The mean DSC value of the segmented artefact volumes in the DW- vs. T1W images were 21% and 5% for the 1.5- and 3.0T MR scanner, respectively. CONCLUSIONS This study has shown that both the size and displacement of the FMAs increase in the PE direction on DW images. The larger shifts were observed for FMs positioned with the long axis orthogonal to the PE direction. Measurements obtained for different b-values gave consistent results.
Collapse
Affiliation(s)
- Susanne Rylander
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | |
Collapse
|
38
|
Grau C, Olsen DR, Overgaard J, Høyer M, Lindegaard JC, Muren LP. Biology-guided adaptive radiation therapy - presence or future? Acta Oncol 2010; 49:884-7. [PMID: 20831476 DOI: 10.3109/0284186x.2010.516010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
MESH Headings
- Adaptation, Biological/physiology
- Adaptation, Biological/radiation effects
- Biology/methods
- Biology/trends
- Dose Fractionation, Radiation
- Fluorodeoxyglucose F18
- Humans
- Radiation Oncology/methods
- Radiation Oncology/trends
- Radiosurgery/methods
- Radiosurgery/trends
- Radiotherapy Dosage
- Radiotherapy, Computer-Assisted/methods
- Radiotherapy, Computer-Assisted/trends
- Radiotherapy, Conformal/adverse effects
- Radiotherapy, Conformal/methods
- Radiotherapy, Conformal/trends
- Surgery, Computer-Assisted/methods
- Surgery, Computer-Assisted/trends
Collapse
|