1
|
Gray M, Meehan J, Turnbull AK, Martínez-Pérez C, Kay C, Pang LY, Argyle DJ. The Importance of the Tumor Microenvironment and Hypoxia in Delivering a Precision Medicine Approach to Veterinary Oncology. Front Vet Sci 2020; 7:598338. [PMID: 33282935 PMCID: PMC7688625 DOI: 10.3389/fvets.2020.598338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/12/2020] [Indexed: 11/26/2022] Open
Abstract
Treating individual patients on the basis of specific factors, such as biomarkers, molecular signatures, phenotypes, environment, and lifestyle is what differentiates the precision medicine initiative from standard treatment regimens. Although precision medicine can be applied to almost any branch of medicine, it is perhaps most easily applied to the field of oncology. Cancer is a heterogeneous disease, meaning that even though patients may be histologically diagnosed with the same cancer type, their tumors may have different molecular characteristics, genetic mutations or tumor microenvironments that can influence prognosis or treatment response. In this review, we describe what methods are currently available to clinicians that allow them to monitor key tumor microenvironmental parameters in a way that could be used to achieve precision medicine for cancer patients. We further describe exciting novel research involving the use of implantable medical devices for precision medicine, including those developed for mapping tumor microenvironment parameters (e.g., O2, pH, and cancer biomarkers), delivering local drug treatments, assessing treatment responses, and monitoring for recurrence and metastasis. Although these research studies have predominantly focused on and were tailored to humans, the results and concepts are equally applicable to veterinary patients. While veterinary clinical studies that have adopted a precision medicine approach are still in their infancy, there have been some exciting success stories. These have included the development of a receptor tyrosine kinase inhibitor for canine mast cell tumors and the production of a PCR assay to monitor the chemotherapeutic response of canine high-grade B-cell lymphomas. Although precision medicine is an exciting area of research, it currently has failed to gain significant translation into human and veterinary healthcare practices. In order to begin to address this issue, there is increasing awareness that cross-disciplinary approaches involving human and veterinary clinicians, engineers and chemists may be needed to help advance precision medicine toward its full integration into human and veterinary clinical practices.
Collapse
Affiliation(s)
- Mark Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Scotland, United Kingdom
| | - James Meehan
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
| | - Arran K. Turnbull
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
- Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
| | - Carlos Martínez-Pérez
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
- Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
| | - Charlene Kay
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
- Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
| | - Lisa Y. Pang
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Scotland, United Kingdom
| | - David J. Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Scotland, United Kingdom
| |
Collapse
|
2
|
Lazzari G, Silvano G. From Anemia to Erythropoietin Resistance in Head and Neck Squamous Cell Carcinoma Treatment: A Carousel Driven by Hypoxia. Onco Targets Ther 2020; 13:841-851. [PMID: 32099388 PMCID: PMC6996291 DOI: 10.2147/ott.s242263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/16/2020] [Indexed: 01/05/2023] Open
Abstract
Anemia has been identified as a significant negative prognosticator in head and neck squamous cell carcinoma (HNSCC) concurrent chemoradiotherapy (CCRT). Irrespective of the causes, anemia in HNSCC is believed to contribute to intratumoral hypoxia, which reduces the effectiveness of radiotherapy and oxygen-dependent chemotherapy. Correction of anemia with recombinant human erythropoietin (rHu-EPO) has been performed as a surrogate for hypoxia compensation to improve tumor control and survival outcomes. However, the results of the most important EPO clinical trials have been disappointing. Following the recent finding that EPO and its receptor (EPOR) are both expressed in HNSCC specimens, a new hypothesis has been advanced. This postulates that hypoxic signaling might activate EPOR through the hypoxia-inducible factor (HIF) signaling pathway and its downstream effectors, including carbonic anhydrase 9 (CA-9), glucose transporter 1 (GLUT-1), and vascular endothelial growth factor (VEGF), leading to the failure of rHu-EPO treatment, as assessed from the results of the best-known EPO trials. This review addresses the relationship among anemia, hypoxia, and tumoral EPO/EPOR expression in HNSCC treatment in an attempt to elucidate the main mechanisms involved in the resistance to rHu-EPO therapy, as in a carousel.
Collapse
Affiliation(s)
- Grazia Lazzari
- Radiation Oncology Unit, Saint Giuseppe Moscati Hospital, Taranto 74100, Italy
| | - Giovanni Silvano
- Radiation Oncology Unit, Saint Giuseppe Moscati Hospital, Taranto 74100, Italy
| |
Collapse
|
3
|
Grau C, Overgaard J, Høyer M, Tanderup K, Lindegaard JC, Muren LP. Biology-guided adaptive radiotherapy (BiGART) is progressing towards clinical reality. Acta Oncol 2015; 54:1245-50. [PMID: 26390238 DOI: 10.3109/0284186x.2015.1076992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Cai Grau
- a Department of Oncology , Aarhus University Hospital , Aarhus , Denmark
| | - Jens Overgaard
- b Department of Experimental Clinical Oncology , Aarhus University Hospital , Aarhus , Denmark
| | - Morten Høyer
- a Department of Oncology , Aarhus University Hospital , Aarhus , Denmark
| | - Kari Tanderup
- a Department of Oncology , Aarhus University Hospital , Aarhus , Denmark
- c Department of Medical Physics , Aarhus University Hospital , Aarhus , Denmark
| | | | - Ludvig Paul Muren
- a Department of Oncology , Aarhus University Hospital , Aarhus , Denmark
- c Department of Medical Physics , Aarhus University Hospital , Aarhus , Denmark
| |
Collapse
|
4
|
Zornhagen KW, Clausen MM, Hansen AE, Law I, McEvoy FJ, Engelholm SA, Kjær A, Kristensen AT. Use of Molecular Imaging Markers of Glycolysis, Hypoxia and Proliferation ((18)F-FDG, (64)Cu-ATSM and (18)F-FLT) in a Dog with Fibrosarcoma: The Importance of Individualized Treatment Planning and Monitoring. Diagnostics (Basel) 2015; 5:372-82. [PMID: 26854160 PMCID: PMC4665600 DOI: 10.3390/diagnostics5030372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/27/2015] [Accepted: 09/03/2015] [Indexed: 12/14/2022] Open
Abstract
Glycolysis, hypoxia, and proliferation are important factors in the tumor microenvironment contributing to treatment-resistant aggressiveness. Imaging these factors using combined functional positron emission tomography and computed tomography can potentially guide diagnosis and management of cancer patients. A dog with fibrosarcoma was imaged using 18F-FDG, 64Cu-ATSM, and 18F-FLT before, during, and after 10 fractions of 4.5 Gy radiotherapy. Uptake of all tracers decreased during treatment. Fluctuations in 18F-FDG and 18F-FLT PET uptakes and a heterogeneous spatial distribution of the three tracers were seen. Tracer distributions partially overlapped. It appears that each tracer provides distinct information about tumor heterogeneity and treatment response.
Collapse
Affiliation(s)
- Kamilla Westarp Zornhagen
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlaegevej 16, DK-1870 Frederiksberg C, Denmark.
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark.
- Department of Radiation Oncology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2200 Copenhagen N, Denmark.
| | - Malene M Clausen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark.
| | - Anders E Hansen
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, Building 345E, DK-2800 Kgs. Lyngby, Denmark.
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark.
| | - Fintan J McEvoy
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlaegevej 16, DK-1870 Frederiksberg C, Denmark.
| | - Svend A Engelholm
- Department of Radiation Oncology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2200 Copenhagen N, Denmark.
| | - Andreas Kjær
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark.
| | - Annemarie T Kristensen
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlaegevej 16, DK-1870 Frederiksberg C, Denmark.
| |
Collapse
|
5
|
Belli ML, Fiorino C, Zerbetto F, Raso R, Broggi S, Chiara A, Cattaneo GM, Di Muzio N, Dell'oca I, Calandrino R. Early volume variation of positive lymph nodes assessed by in-room mega voltage CT images predicts risk of loco-regional relapses in head and neck cancer patients treated with intensity-modulated radiotherapy. Acta Oncol 2015. [PMID: 26203925 DOI: 10.3109/0284186x.2015.1062137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND We investigated the possibility to early identify non-responding patients based on FDG-PET positive lymph nodes (PNs) volume variation assessed with in-room images. MATERIAL AND METHODS Twenty-seven head and neck cancer patients with at least one pre-treatment PNs were retrospectively analyzed; they received 54 Gy, 66 Gy, 69 Gy in 30 fractions on precautionary lymph nodal (N), primary (T) and PET positive (BTV) planning target volumes (PTVs), respectively with Helical TomoTherapy (SIB approach). PNs volume changes during treatment were assessed based on megavoltage computed tomography (MVCT) used for image guidance as ratio between volumes at fractions 10/20/30 and at first fraction. Data on T, N and M relapses (rT, rN, rM) were collected for all patients. The difference of PNs volume changes, during treatment, between patients with versus without relapses was tested (Mann-Whitney test). The impact of shrinkage on the corresponding survival curves (Cox proportional-hazard regression), dividing between no/moderate versus large shrinkage (based on ROC curve best cut-off value) was also investigated. RESULTS Median follow-up was 27.4 m (3.7-108.9). The numbers for rT, rN, rM were 5, 4, 6, respectively. Differences in PNs shrinkage were found between patients with and without rT/rN at all considered timing [fr 20, rT: 0.56 vs. 1.07 (median), p = 0.06; rN: 0.57 vs. 1.25, p = 0.07]. Differences were lower for rM. Survival curves provide high hazard ratios (HR) between PNs changes and rT/rN at all considered timing [fr 20, rT: best cut-off = 0.58, HR 5.1 (95% CI 0.5-49.4), p = 0.12; rN: best cut-off = 0.98, HR 14.9 (1.6-142.9), p = 0.01]. CONCLUSION A limited shrinkage of PNs during treatment is associated with poorer outcome in terms of T/N relapses. The early variation of PNs observed on in-room images may provide useful information about the individual response with potential application in guiding an early adaptation of the treatment.
Collapse
Affiliation(s)
- Maria Luisa Belli
- a Medical Physics, S. Raffaele Scientific Institute , Milano , Italy
| | - Claudio Fiorino
- a Medical Physics, S. Raffaele Scientific Institute , Milano , Italy
| | - Flavia Zerbetto
- b Radiotherapy, S. Raffaele Scientific Institute , Milano , Italy
| | - Roberta Raso
- a Medical Physics, S. Raffaele Scientific Institute , Milano , Italy
| | - Sara Broggi
- a Medical Physics, S. Raffaele Scientific Institute , Milano , Italy
| | - Anna Chiara
- b Radiotherapy, S. Raffaele Scientific Institute , Milano , Italy
| | | | - Nadia Di Muzio
- b Radiotherapy, S. Raffaele Scientific Institute , Milano , Italy
| | - Italo Dell'oca
- b Radiotherapy, S. Raffaele Scientific Institute , Milano , Italy
| | | |
Collapse
|
6
|
Hypoxia in head and neck cancer in theory and practice: a PET-based imaging approach. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2014; 2014:624642. [PMID: 25214887 PMCID: PMC4158154 DOI: 10.1155/2014/624642] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/06/2014] [Indexed: 11/24/2022]
Abstract
Hypoxia plays an important role in tumour recurrence among head and neck cancer patients. The identification and quantification of hypoxic regions are therefore an essential aspect of disease management. Several predictive assays for tumour oxygenation status have been developed in the past with varying degrees of success. To date, functional imaging techniques employing positron emission tomography (PET) have been shown to be an important tool for both pretreatment assessment and tumour response evaluation during therapy. Hypoxia-specific PET markers have been implemented in several clinics to quantify hypoxic tumour subvolumes for dose painting and personalized treatment planning and delivery. Several new radiotracers are under investigation. PET-derived functional parameters and tracer pharmacokinetics serve as valuable input data for computational models aiming at simulating or interpreting PET acquired data, for the purposes of input into treatment planning or radio/chemotherapy response prediction programs. The present paper aims to cover the current status of hypoxia imaging in head and neck cancer together with the justification for the need and the role of computer models based on PET parameters in understanding patient-specific tumour behaviour.
Collapse
|
7
|
Muren LP, Teräs M, Knuuti J. NACP 2014 and the Turku PET symposium: the interaction between therapy and imaging. Acta Oncol 2014; 53:993-6. [PMID: 25141819 DOI: 10.3109/0284186x.2014.941073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ludvig P Muren
- Department of Medical Physics, Aarhus University and Aarhus University Hospital , Aarhus , Denmark
| | | | | |
Collapse
|