1
|
Overbeck N, Andersen TL, Rodell AB, Cabello J, Birge N, Schleyer P, Conti M, Korsholm K, Fischer BM, Andersen FL, Lindberg U. Device-Less Data-Driven Cardiac and Respiratory Gating Using LAFOV PET Histo Images. Diagnostics (Basel) 2024; 14:2055. [PMID: 39335734 PMCID: PMC11431545 DOI: 10.3390/diagnostics14182055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background: The outstanding capabilities of modern Positron Emission Tomography (PET) to highlight small tumor lesions and provide pathological function assessment are at peril from image quality degradation caused by respiratory and cardiac motion. However, the advent of the long axial field-of-view (LAFOV) scanners with increased sensitivity, alongside the precise time-of-flight (TOF) of modern PET systems, enables the acquisition of ultrafast time resolution images, which can be used for estimating and correcting the cyclic motion. Methods: 0.25 s so-called [18F]FDG PET histo image series were generated in the scope of for detecting respiratory and cardiac frequency estimates applicable for performing device-less data-driven gated image reconstructions. The frequencies of the cardiac and respiratory motion were estimated for 18 patients using Short Time Fourier Transform (STFT) with 20 s and 30 s window segments, respectively. Results: The Fourier analysis provided time points usable as input to the gated reconstruction based on eight equally spaced time gates. The cardiac investigations showed estimates in accordance with the measured pulse oximeter references (p = 0.97) and a mean absolute difference of 0.4 ± 0.3 beats per minute (bpm). The respiratory frequencies were within the expected range of 10-20 respirations per minute (rpm) in 16 out of 18 patients. Using this setup, the analysis of three patients with visible lung tumors showed an increase in tumor SUVmax and a decrease in tumor volume compared to the non-gated reconstructed image. Conclusions: The method can provide signals that were applicable for gated reconstruction of both cardiac and respiratory motion, providing a potential increased diagnostic accuracy.
Collapse
Affiliation(s)
- Nanna Overbeck
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| | - Thomas Lund Andersen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University, 2100 Copenhagen, Denmark
| | | | - Jorge Cabello
- Siemens Medical Solutions USA, Inc., Knoxville, TN 37932, USA
| | - Noah Birge
- Siemens Medical Solutions USA, Inc., Knoxville, TN 37932, USA
| | - Paul Schleyer
- Siemens Medical Solutions USA, Inc., Knoxville, TN 37932, USA
| | - Maurizio Conti
- Siemens Medical Solutions USA, Inc., Knoxville, TN 37932, USA
| | - Kirsten Korsholm
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| | - Barbara Malene Fischer
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University, 2100 Copenhagen, Denmark
| | - Flemming Littrup Andersen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University, 2100 Copenhagen, Denmark
| | - Ulrich Lindberg
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
2
|
Noto B, Roll W, Zinken L, Rischen R, Kerschke L, Evers G, Heindel W, Schäfers M, Büther F. Respiratory motion correction in F-18-FDG PET/CT impacts lymph node assessment in lung cancer patients. EJNMMI Res 2022; 12:61. [PMID: 36107357 PMCID: PMC9478021 DOI: 10.1186/s13550-022-00926-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/19/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUNDS Elastic motion correction in PET has been shown to increase image quality and quantitative measurements of PET datasets affected by respiratory motion. However, little is known on the impact of respiratory motion correction on clinical image evaluation in oncologic PET. This study evaluated the impact of motion correction on expert readers' lymph node assessment of lung cancer patients. METHODS Forty-three patients undergoing F-18-FDG PET/CT for the staging of suspected lung cancer were included. Three different PET reconstructions were investigated: non-motion-corrected ("static"), belt gating-based motion-corrected ("BG-MC") and data-driven gating-based motion-corrected ("DDG-MC"). Assessment was conducted independently by two nuclear medicine specialists blinded to the reconstruction method on a six-point scale [Formula: see text] ranging from "certainly negative" (1) to "certainly positive" (6). Differences in [Formula: see text] between reconstruction methods, accounting for variation caused by readers, were assessed by nonparametric regression analysis of longitudinal data. From [Formula: see text], a dichotomous score for N1, N2, and N3 ("negative," "positive") and a subjective certainty score were derived. SUV and metabolic tumor volumes (MTV) were compared between reconstruction methods. RESULTS BG-MC resulted in higher scores for N1 compared to static (p = 0.001), whereas DDG-MC resulted in higher scores for N2 compared to static (p = 0.016). Motion correction resulted in the migration of N1 from tumor free to metastatic on the dichotomized score, consensually for both readers, in 3/43 cases and in 2 cases for N2. SUV was significantly higher for motion-corrected PET, while MTV was significantly lower (all p < 0.003). No significant differences in the certainty scores were noted. CONCLUSIONS PET motion correction resulted in significantly higher lymph node assessment scores of expert readers. Significant effects on quantitative PET parameters were seen; however, subjective reader certainty was not improved.
Collapse
Affiliation(s)
- Benjamin Noto
- grid.16149.3b0000 0004 0551 4246Department of Nuclear Medicine, University Hospital Münster, Münster, Germany ,grid.16149.3b0000 0004 0551 4246Clinical for Radiology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Wolfgang Roll
- grid.16149.3b0000 0004 0551 4246Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Laura Zinken
- grid.16149.3b0000 0004 0551 4246Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Robert Rischen
- grid.16149.3b0000 0004 0551 4246Clinical for Radiology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Laura Kerschke
- grid.5949.10000 0001 2172 9288Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Georg Evers
- grid.16149.3b0000 0004 0551 4246Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Münster, Münster, Germany
| | - Walter Heindel
- grid.16149.3b0000 0004 0551 4246Clinical for Radiology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany ,West German Cancer Centre (WTZ), Münster, Germany
| | - Michael Schäfers
- grid.16149.3b0000 0004 0551 4246Department of Nuclear Medicine, University Hospital Münster, Münster, Germany ,grid.5949.10000 0001 2172 9288European Institute for Molecular Imaging, University of Münster, Münster, Germany ,West German Cancer Centre (WTZ), Münster, Germany
| | - Florian Büther
- grid.16149.3b0000 0004 0551 4246Department of Nuclear Medicine, University Hospital Münster, Münster, Germany ,grid.5949.10000 0001 2172 9288European Institute for Molecular Imaging, University of Münster, Münster, Germany
| |
Collapse
|
3
|
Ruan W, Liu F, Sun X, Hu F, Wu T, Zhang Y, Lan X. Evaluating two respiratory correction methods for abdominal PET/MRI imaging. EJNMMI Phys 2022; 9:5. [PMID: 35099646 PMCID: PMC8804027 DOI: 10.1186/s40658-022-00430-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background To evaluate two respiratory correction methods for abdominal PET/MRI images and further to analyse the effects on standard uptake values (SUVs) of respiratory motion correction, 17 patients with 25 abdominal lesions on 18F-FDG PET/CT were scanned with PET/MRI. PET images were reconstructed using end-expiratory respiratory gating and multi-bin respiratory gating. Meanwhile, full data and the first 3 min and 20 s of data acquired both without respiratory gating were reconstructed for evaluation. Five parameters, including the SUVmax and SUVmean in the lesions, the SUVmean and standard deviation (SD) in the background, and the signal-to-noise ratio (SNR), were calculated and used for statistical comparisons. The differences in multi-bin respiratory gating and reconstruction of full data, relative to the reconstruction of the first 3 min and 20 s of data acquired, were calculated. Results Compared with PET/CT, the longer scanning time of abdominal PET/MRI makes respiratory motion correction necessary. The multi-bin respiratory gating correction could reduce the PET image blur and increase the SUVmax (11.98%) and SUVmean (13.12%) of the lesions significantly (p = 0.00), which was much more effective than end-expiratory respiratory gating for abdominal PET/MRI. The added value of SUVmax caused by respiratory motion correction has no significant difference compared with that caused by count loss with the correction (p = 0.39), which was rarely reported by previous studies. Conclusion Based on the current parameters, the method of multi-bin respiratory gating was more effective for respiratory motion correction in abdominal PET/MRI in comparisons with the method of end-respiratory gating. However, the increased noise in gated images, due to the fact that PET data get discarded, is partly responsible for the increase in SUVmax.
Collapse
Affiliation(s)
- Weiwei Ruan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Fang Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xun Sun
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Fan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | | | - Yongxue Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China. .,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
4
|
Kim JS, Park CR, Yoon SH, Lee JA, Kim TY, Yang HJ. Improvement of image quality using amplitude-based respiratory gating in PET-computed tomography scanning. Nucl Med Commun 2021; 42:553-565. [PMID: 33625179 DOI: 10.1097/mnm.0000000000001368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES This study sought to provide data supporting the expanded clinical use of respiratory gating by assessing the diagnostic accuracy of breathing motion correction using amplitude-based respiratory gating. METHODS A respiratory movement tracking device was attached to a PET-computed tomography scanner, and images were obtained in respiratory gating mode using a motion phantom that was capable of sensing vertical motion. Specifically, after setting amplitude changes and intervals according to the movement cycle using a total of nine combinations of three waveforms and three amplitude ranges, respiratory motion-corrected images were reconstructed using the filtered back projection method. After defining areas of interest in the acquired images in the same image planes, statistical analyses were performed to compare differences in standardized uptake value (SUV), lesion volume, full width at half maximum (FWHM), signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). RESULTS SUVmax increased by 89.9%, and lesion volume decreased by 27.9%. Full width at half maximum decreased by 53.9%, signal-to-noise ratio increased by 11% and contrast-to-noise ratio increased by 16.3%. Optimal results were obtained when using a rest waveform and 35% duty cycle, in which the change in amplitude in the respiratory phase signal was low, and a constant level of long breaths was maintained. CONCLUSIONS These results demonstrate that respiratory-gated PET-CT imaging can be used to accurately correct for SUV changes and image distortion caused by respiratory motion, thereby providing excellent imaging information and quality.
Collapse
Affiliation(s)
- Jung-Soo Kim
- Department of Radiological Technology, Dongnam Health University, Suwon
- Department of Biomedical Science, The Korea University, Sejong
| | - Chan-Rok Park
- Department of Biomedical Science, The Korea University, Sejong
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul
| | - Seok-Hwan Yoon
- Department of Biomedical Science, The Korea University, Sejong
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul
| | - Joo-Ah Lee
- Department of Biomedical Science, The Korea University, Sejong
- Department of Radiation Oncology, Catholic University Incheon St. Mary's Hospital, Incheon
| | - Tae-Yoon Kim
- Department of Radiation Oncology, Catholic University Incheon St. Mary's Hospital, Incheon
- Department of Radiation Oncology, National Cancer Center, Goyang
| | - Hyung-Jin Yang
- Department of Radiation Oncology, Catholic University Incheon St. Mary's Hospital, Incheon
- Department of Physics, The Korea University, Sejong, Korea
| |
Collapse
|
5
|
Meier JG, Einstein SA, Diab RH, Erasmus LJ, Xu G, Mawlawi OR. Impact of free-breathing CT on quantitative measurements of static and quiescent period-gated PET Images. Phys Med Biol 2019; 64:105013. [PMID: 31026840 DOI: 10.1088/1361-6560/ab1cdd] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Measurements of standardized uptake values (SUV) can vary due to many causes, including respiratory motion. Various methodologies have been introduced to correct for motion in PET, with quiescent-period-gated (QPG) PET being the most popular approach. QPG has been shown to improve PET image quantification compared to static-whole-body (SWB) PET. However, to achieve this improvement, QPG PET requires CT attenuation correction data that matches the QPG PET data. In this paper we investigated the effect of using free-breathing CT for attenuation correction of QPG PET on SUVmax and SUVpeak and compared the results to those of SWB PET. 34 lesions in 27 patients were included. All patients were injected with F-18 FDG. 4D-CT datasets representing all possible phases of respiration that could result from a free-breathing CT were acquired. The 4D-CT datasets were used for attenuation correction of the QPG and SWB PET data. Percentage change in the SUVmax and SUVpeak range was calculated for the reconstructions and compared between QPG and SWB PET. The mean percentage change in the lesion SUVmax and SUVpeak ranges were 19.1% (p = 0.0178) and 25.2% (p = 0.0002) higher for QPG compared to SWB, respectively. The maximum percent change in SUVmax and SUVpeak ranges were 58.5% and 59.0% for QPG, respectively compared to 46.1% and 45.3% for SWB, respectively. The highest SUVmax and SUVpeak measurements corresponded to the CT phase that matched the QPG phase. Utilizing free-breathing CT for attenuation correction can lead to large changes in quantification due to misalignment with PET data. This misalignment has a large quantitative impact on QPG PET as compared to SWB PET. When interpreting quantitative changes in lesions, it is critical to consider the influences of free-breathing CT-based attenuation correction.
Collapse
Affiliation(s)
- Joseph G Meier
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States of America. MD Anderson Cancer Center UTHealth Science Center at Houston Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030, United States of America
| | | | | | | | | | | |
Collapse
|
6
|
Dalah E, Tai A, Oshima K, Hall WA, Erickson B, Li XA. PET-based Treatment Response Assessment for Neoadjuvant Chemoradiation in Pancreatic Adenocarcinoma: An Exploratory Study. Transl Oncol 2018; 11:1104-1109. [PMID: 30015263 PMCID: PMC6070701 DOI: 10.1016/j.tranon.2018.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 12/25/2022] Open
Abstract
PURPOSE: Performance of anatomical metrics of Response Evaluation Criteria in Solid Tumors (RECIST1.1) versus Positron Emission Tomography Response Criteria in Solid Tumors (PERCIST1.0) for neoadjuvant chemoradiation (nCR) of pancreatic adenocarcinoma was evaluated based on the pathological treatment response (PTR) data. METHODS AND MATERIALS: The pre- and post-nCR CT and PET data for 14 patients with resectable or borderline resectable pancreatic head adenocarcinoma treated with nCR followed by surgery were retrospectively analyzed. These data were compared with the PTR which were graded according to tumor cell destruction (cellularity), with Grade 0, 1, 2 or 3 (G0, G1, G2 or G3) for complete, moderate, minimal and poor responses, respectively. Maximum standardized uptake value (SUVmax) was defined using body-weight (SUVbw). PERCIST1.0 was defined using lean-body mass normalized SUV (SUVlb or SUL). RECIST1.1 was defined by contouring the whole pancreas head on the CT image. Pre- and post-SUL-peak and SUVmax, RECIST1.1 and PETRECIST1.0 were correlated with PTR using Pearson’s correlation coefficient test. RESULTS: The average mean and SD in SUL-peak for all patients analyzed were lower in post-nCR (3.63±1.06) compared to those at pre-nCR (4.29±0.89). Using PERCIST1.0, 62% of patients showed stable metabolic disease (SMD), 23% partial metabolic response (PMR), and 15% progressive metabolic disease (PMD). Using RECIST1.1, 85% of patients showed stable disease (SD), 8% partial response (PR), and 7% progressive diseases (PD). A poor insignificant correlation was established between PRT and PERECIST1.0 (r=0.121), whereas no correlation was seen with RECIST1.1. CONCLUSIONS: PERCIST1.0 appears to increase the chance of detecting patients with progressive disease compared to the conventional anatomical-based assessment of RECIST1.1. The integration of these additional radiographic metrics in assessing treatment response to nCR for pancreatic adenocarcinoma may provide a promising strategy to better select patients that are most suitable for therapeutic intensification.
Collapse
Affiliation(s)
- Entesar Dalah
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Medical Diagnostic Imaging, College of Health Science, University of Sharjah, UAE
| | - An Tai
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kiyoko Oshima
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - William A Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Beth Erickson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
7
|
Song C, Yang Y, Qi W, Wernick MN, Pretorius PH, King MA. Motion-compensated image reconstruction vs postreconstruction correction in respiratory-binned SPECT with standard and reduced-dose acquisitions. Med Phys 2018; 45:2991-3000. [PMID: 29679508 DOI: 10.1002/mp.12932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/19/2018] [Accepted: 04/04/2018] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Cardiac perfusion images in single-photon emission computed tomography (SPECT) can suffer from respiratory motion blur. We investigated a reconstruction approach for correcting respiratory motion in respiratory-binned acquisitions and assessed the benefit of this approach in both standard dose and reduced dose. METHODS We modeled the acquired data from different respiratory bins by a joint probability distribution which was parameterized with respect to a common reference bin. The acquired data from all the respiratory bins were then utilized simultaneously for determining the source distribution in the reference bin using maximum a posteriori (MAP) estimation. We evaluated this approach with simulated imaging data and ten sets of clinical acquisitions, and compared it with a postreconstruction motion correction approach developed previously. We quantified the accuracy of the reconstruction results both at standard dose and with imaging dose reduced by 50% and 75%, respectively. RESULTS The proposed motion-compensated reconstruction (MCR) approach led to improved reconstruction of the myocardium in terms of both noise level and LV wall resolution. Compared to traditional acquisition (without motion correction), the proposed approach reduced the mean squared error of the image intensity in the myocardium by 27.59%, 20.59%, and 12.05% at full, half-, and quarter dose, respectively; the LV resolution, quantified by the full width at half-maximum (FWHM), was improved by 17.34%, 14.35%, and 12.95% at full, half-, and quarter dose, respectively; in addition, the proposed approach also improved the perfusion defect detectability at both full dose and reduced dose. Furthermore, with motion correction, the reconstruction results obtained at half-dose were comparable to that obtained at full dose without correction. Similar improvements were also demonstrated in the clinical acquisitions at different dose levels. CONCLUSIONS Respiratory motion correction in perfusion SPECT can improve the reconstruction of the myocardium at both standard and reduced dose. At half-dose, the results obtained with motion correction are comparable to that of traditional reconstruction obtained at full dose. MCR can be more accurate than postreconstruction correction.
Collapse
Affiliation(s)
- Chao Song
- Medical Imaging Research Center, Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Yongyi Yang
- Medical Imaging Research Center, Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Wenyuan Qi
- Medical Imaging Research Center, Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Miles N Wernick
- Medical Imaging Research Center, Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - P Hendrik Pretorius
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Michael A King
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| |
Collapse
|
8
|
Sindoni A, Minutoli F, Pontoriero A, Iatì G, Baldari S, Pergolizzi S. Usefulness of four dimensional (4D) PET/CT imaging in the evaluation of thoracic lesions and in radiotherapy planning: Review of the literature. Lung Cancer 2016; 96:78-86. [DOI: 10.1016/j.lungcan.2016.03.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/31/2016] [Indexed: 11/30/2022]
|
9
|
Muren LP, Teräs M, Knuuti J. NACP 2014 and the Turku PET symposium: the interaction between therapy and imaging. Acta Oncol 2014; 53:993-6. [PMID: 25141819 DOI: 10.3109/0284186x.2014.941073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ludvig P Muren
- Department of Medical Physics, Aarhus University and Aarhus University Hospital , Aarhus , Denmark
| | | | | |
Collapse
|