1
|
Chau B, Abuali T, Shirvani SM, Leung D, Al Feghali KA, Hui S, McGee H, Han C, Liu A, Amini A. Feasibility of Biology-guided Radiotherapy (BgRT) Targeting Fluorodeoxyglucose (FDG) avid liver metastases. Radiat Oncol 2024; 19:124. [PMID: 39294733 PMCID: PMC11412044 DOI: 10.1186/s13014-024-02502-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 08/02/2024] [Indexed: 09/21/2024] Open
Abstract
INTRODUCTION Biology-guided radiotherapy (BgRT) is a novel radiation delivery approach utilizing fluorodeoxyglucose (FDG) activity on positron emission tomography (PET) imaging performed in real-time to track and direct RT. Our institution recently acquired the RefleXion X1 BgRT system and sought to assess the feasibility of targeting metastatic sites in various organs, including the liver. However, in order for BgRT to function appropriate, adequate contrast in FDG activity between the tumor and the background tissue, referred to as the normalized SUV (NSUV), is necessary for optimal functioning of BgRT. METHODS We reviewed the charts of 50 lung adenocarcinoma patients with liver metastases. The following variables were collected: SUVmax and SUVmean for each liver metastasis, SUVmean and SUVmax at 5 and 10 mm radially from the lesion, and NSUV at 5 mm and 10 mm (SUVmax of the liver metastasis divided by SUV mean at 5 mm at 10 mm respectively). RESULTS 82 measurable liver metastases were included in the final analysis. The average SUVbackground of liver was 2.26 (95% confidence interval [CI] 2.17-2.35); average SUVmean for liver metastases was 5.31 (95% CI 4.87-5.75), and average SUVmax of liver metastases was 9.19 (95% CI 7.59-10.78). The average SUVmean at 5 mm and 10 mm radially from each lesion were 3.08 (95% CI 3.00-2.16) and 2.60 (95% CI 2.52-2.68), respectively. The mean NSUV at 5 mm and 10 mm were 3.13 (95% CI 2.53-3.73) and 3.69 (95% CI 3.00-4.41) respectively. Furthermore, 90% of lesions had NSUV greater than 1.45 at 5 mm and greater than 1.77 at 10 mm. CONCLUSIONS This is the first study to comprehensively characterize FDG contrast between the liver tumor and background, referred to as NSUV. Due to the high background SUV normally found in the liver, this work will be valuable for guiding optimization of BgRT for treating liver metastases in the future using the RefleXion® X1 and potentially other similar BgRT platforms.
Collapse
Affiliation(s)
- Brittney Chau
- New York Medical College, School of Medicine, New York, NY, USA
| | - Tariq Abuali
- Department of Radiation Oncology, City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA, 91010, USA
| | | | | | | | - Susanta Hui
- Department of Radiation Oncology, City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA, 91010, USA
| | - Heather McGee
- Department of Radiation Oncology, City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA, 91010, USA
| | - Chunhui Han
- Department of Radiation Oncology, City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA, 91010, USA
| | - An Liu
- Department of Radiation Oncology, City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA, 91010, USA
| | - Arya Amini
- Department of Radiation Oncology, City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
2
|
Høyer M, Grau C, Overgaard J. No time to die - BiGART is back. The 20th Acta Oncologica Symposium - BIGART 2021. Acta Oncol 2022; 61:117-119. [PMID: 34991422 DOI: 10.1080/0284186x.2021.2022206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Morten Høyer
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Cai Grau
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
3
|
Hua CH, Mascia AE, Servalli E, Lomax AJ, Seiersen K, Ulin K. Advances in radiotherapy technology for pediatric cancer patients and roles of medical physicists: COG and SIOP Europe perspectives. Pediatr Blood Cancer 2021; 68 Suppl 2:e28344. [PMID: 33818892 PMCID: PMC8030241 DOI: 10.1002/pbc.28344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 11/11/2022]
Abstract
Over the last two decades, rapid technological advances have dramatically changed radiation delivery to children with cancer, enabling improved normal-tissue sparing. This article describes recent advances in photon and proton therapy technologies, image-guided patient positioning, motion management, and adaptive therapy that are relevant to pediatric cancer patients. For medical physicists who are at the forefront of realizing the promise of technology, challenges remain with respect to ensuring patient safety as new technologies are implemented with increasing treatment complexity. The contributions of medical physicists to meeting these challenges in daily practice, in the conduct of clinical trials, and in pediatric oncology cooperative groups are highlighted. Representing the perspective of the physics committees of the Children's Oncology Group (COG) and the European Society for Paediatric Oncology (SIOP Europe), this paper provides recommendations regarding the safe delivery of pediatric radiotherapy. Emerging innovations are highlighted to encourage pediatric applications with a view to maximizing the therapeutic ratio.
Collapse
Affiliation(s)
- Chia-ho Hua
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Anthony E. Mascia
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Enrica Servalli
- Department of Radiotherapy, University Medical Center Utrecht, The Netherlands
| | - Antony J. Lomax
- Center for Proton Therapy, Paul Scherrer Institute, PSI Villigen, Switzerland
| | | | - Kenneth Ulin
- Department of Radiation Oncology, University of Massachusetts, Worcester, Massachusetts, USA
| |
Collapse
|
4
|
Duffton A, Li W, Forde E. The Pivotal Role of the Therapeutic Radiographer/Radiation Therapist in Image-guided Radiotherapy Research and Development. Clin Oncol (R Coll Radiol) 2020; 32:852-860. [PMID: 33087296 DOI: 10.1016/j.clon.2020.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/21/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022]
Abstract
The ability to personalise radiotherapy to fit the individual patient and their diagnosis has been realised through technological advancements. There is now more opportunity to utilise these technologies and deliver precision radiotherapy for more patients. Image-guided radiotherapy (IGRT) has enabled users to safely and accurately plan, treat and verify complex cases; and deliver a high dose to the target volume, while minimising dose to normal tissue. Rapid changes in IGRT have required a multidisciplinary team (MDT) approach, carefully deciding optimum protocols to achieve clinical benefit. Therapeutic radiographer/radiation therapists (RTTs) play a pivotal role in this MDT. There is already a great deal of evidence that illustrates the contribution of RTTs in IGRT development; implementation; quality assurance; and maintaining training and competency programmes. Often this has required the RTT to undertake additional roles and responsibilities. These publications show how the profession has evolved, expanding the scope of practice. There are now more opportunities for RTT-led IGRT research. This is not only undertaken in the more traditional aspects of practice, but in recent times, more RTTs are becoming involved in imaging biomarkers research and radiomic analysis. The aim of this overview is to describe the RTT contribution to the ongoing development of IGRT and to showcase some of the profession's involvement in IGRT research.
Collapse
Affiliation(s)
- A Duffton
- Department of Radiotherapy, Beatson West of Scotland Cancer Centre, Glasgow, UK.
| | - W Li
- University of Toronto, Toronto, Ontario, Canada; Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - E Forde
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Rogers J, Sherwood V, Wayte SC, Duffy JA, Manolopoulos S. Quantification and correction of distortion in diffusion-weighted MRI at 1.5 and 3 T in a muscle-invasive bladder cancer phantom for radiotherapy planning. Br J Radiol 2020; 93:20190710. [PMID: 32706981 DOI: 10.1259/bjr.20190710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Limited visibility of post-resection muscle-invasive bladder cancer (MIBC) on CT hinders radiotherapy dose escalation of the residual tumour. Diffusion-weighted MRI (DW-MRI) visualises areas of high tumour burden and is increasingly used within diagnosis and as a biomarker for cancer. DW-MRI could, therefore, facilitate dose escalation, potentially via dose-painting and/or accommodating response. However, the distortion inherent in DW-MRI could limit geometric accuracy. Therefore, this study aims to quantify DW-MRI distortion via imaging of a bladder phantom. METHODS A phantom was designed to mimic MIBC and imaged using CT, DW-MRI and T2W-MRI. Fiducial marker locations were compared across modalities and publicly available software was assessed for correction of magnetic susceptibility-related distortion. RESULTS Fiducial marker locations on CT and T2W-MRI agreed within 1.2 mm at 3 T and 1.8 mm at 1.5 T. The greatest discrepancy between CT and apparent diffusion coefficient (ADC) maps was 6.3 mm at 3 T, reducing to 1.8 mm when corrected for distortion. At 1.5 T, these values were 3.9 mm and 1.7 mm, respectively. CONCLUSIONS Geometric distortion in DW-MRI of a model bladder was initially >6 mm at 3 T and >3 mm at 1.5 T; however, established correction methods reduced this to <2 mm in both cases. ADVANCES IN KNOWLEDGE A phantom designed to mimic MIBC has been produced and used to show distortion in DW-MRI can be sufficiently mitigated for incorporation into the radiotherapy pathway. Further investigation is therefore warranted to enable individually adaptive image-guided radiotherapy of MIBC based upon DW-MRI.
Collapse
Affiliation(s)
- Jane Rogers
- Department of Physics, University of Warwick CV4 7AL, Warwick, United Kingdom.,Clinical Physics and Bioengineering, University Hospitals Coventry and Warwickshire NHS Trust CV2 2DX, Coventry, United Kingdom
| | - Victoria Sherwood
- Clinical Physics and Bioengineering, University Hospitals Coventry and Warwickshire NHS Trust CV2 2DX, Coventry, United Kingdom
| | - Sarah C Wayte
- Clinical Physics and Bioengineering, University Hospitals Coventry and Warwickshire NHS Trust CV2 2DX, Coventry, United Kingdom
| | - Jonathan A Duffy
- Department of Physics, University of Warwick CV4 7AL, Warwick, United Kingdom
| | - Spyros Manolopoulos
- Department of Medical Physics and Biomedical Engineering, University College, London WC1E 6BT, United Kingdom
| |
Collapse
|
6
|
Affiliation(s)
- Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Ludvig Paul Muren
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Høyer
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Cai Grau
- Department of Oncology and Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
7
|
Casares-Magaz O, Raidou RG, Rørvik J, Vilanova A, Muren LP. Uncertainty evaluation of image-based tumour control probability models in radiotherapy of prostate cancer using a visual analytic tool. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2018; 5:5-8. [PMID: 33458361 PMCID: PMC7807664 DOI: 10.1016/j.phro.2017.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 11/26/2022]
Abstract
Functional imaging techniques provide radiobiological information that can be included into tumour control probability (TCP) models to enable individualized outcome predictions in radiotherapy. However, functional imaging and the derived radiobiological information are influenced by uncertainties, translating into variations in individual TCP predictions. In this study we applied a previously developed analytical tool to quantify dose and TCP uncertainty bands when initial cell density is estimated from MRI-based apparent diffusion coefficient maps of eleven patients. TCP uncertainty bands of 16% were observed at patient level, while dose variations bands up to 8 Gy were found at voxel level for an iso-TCP approach.
Collapse
Affiliation(s)
- Oscar Casares-Magaz
- Department of Medical Physics, Aarhus University Hospital/Aarhus University, Aarhus, Denmark
| | - Renata G Raidou
- Institute of Computer Graphics and Algorithms, Vienna University of Technology, Austria
| | - Jarle Rørvik
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | | | - Ludvig P Muren
- Department of Medical Physics, Aarhus University Hospital/Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Grau C, Høyer M, Poulsen PR, Muren LP, Korreman SS, Tanderup K, Lindegaard JC, Alsner J, Overgaard J. Rethink radiotherapy - BIGART 2017. Acta Oncol 2017; 56:1341-1352. [PMID: 29148908 DOI: 10.1080/0284186x.2017.1371326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cai Grau
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Høyer
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Ludvig Paul Muren
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Kari Tanderup
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jan Alsner
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
9
|
Affiliation(s)
- Bengt Glimelius
- a Department of Immunology , Genetics and Pathology, Uppsala University , Uppsala , Sweden
| | - Nina Cavalli-Björkman
- a Department of Immunology , Genetics and Pathology, Uppsala University , Uppsala , Sweden
| |
Collapse
|