1
|
Buck AN, Lisee C, Bjornsen E, Büttner C, Birchmeier T, Nilius A, Favoreto N, Spang J, Blackburn T, Pietrosimone B. Acutely Normalizing Walking Speed Does Not Normalize Gait Biomechanics Post-Anterior Cruciate Ligament Reconstruction. Med Sci Sports Exerc 2024; 56:464-475. [PMID: 38051127 PMCID: PMC10922289 DOI: 10.1249/mss.0000000000003330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
PURPOSE To determine the effect of acutely increasing walking speed on gait biomechanics in ACLR individuals compared with their habitual speed and uninjured matched-controls. METHODS Gait biomechanics were collected on 30 ACLR individuals (20 females; age, 22.0 ± 4.2 yr; body mass index, 24.0 ± 3.0 kg·m -2 ) at their habitual speed and at 1.3 m·s -1 , a speed similar to controls, and 30 uninjured matched-controls (age: 21.9 ± 3.8, body mass index: 23.6 ± 2.5) at their habitual speed. Functional waveform analyses compared biomechanics between: i) walking at habitual speed vs 1.3 m·s -1 in ACLR individuals; and ii) ACLR individuals at 1.3 m·s -1 vs controls. RESULTS In the ACLR group, there were no statistically significant biomechanical differences between walking at habitual speed (1.18 ± 0.12 m·s -1 ) and 1.3 m·s -1 (1.29 ± 0.05 m·s -1 ). Compared with controls (habitual speed: 1.34 ± 0.12 m·s -1 ), the ACLR group while walking at 1.3 m·s -1 exhibited smaller vertical ground reaction force (vGRF) during early and late stance (13-28, 78-90% stance phase), greater midstance vGRF (47-61%), smaller early-to-midstance knee flexion angle (KFA; 1-44%), greater mid-to-late stance KFA (68-73, 96-101%), greater internal knee abduction moment (69-101%), and smaller internal knee extension moment (4-51, 88-96%). CONCLUSIONS Increasing walking speed to a speed similar to uninjured controls did not elicit significant changes to gait biomechanics, and ACLR individuals continued to demonstrate biomechanical profiles that are associated with PTOA development and differ from controls.
Collapse
Affiliation(s)
| | - Caroline Lisee
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | | | - Thomas Birchmeier
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Natalia Favoreto
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jeffrey Spang
- Department of Orthopaedics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Troy Blackburn
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Brian Pietrosimone
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
2
|
Nawasreh ZH, Yabroudi MA, Al-Shdifat A, Daradkeh S, Kassas M, Bashaireh K. Kinetic energy absorption differences during drop jump between athletes with and without radiological signs of knee osteoarthritis: Two years post anterior cruciate ligament reconstruction. Gait Posture 2022; 98:289-296. [PMID: 36252434 DOI: 10.1016/j.gaitpost.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Patients demonstrate decreased knee loading and energy absorption after anterior cruciate ligament reconstruction (ACLR). This study aimed to determine the differences in the contribution of joints to the absorbed energy between athletes with and without radiological signs of knee OA 2 years after ACLR during drop jump (DJ) landing from 20, 30, and 40 cm. METHODS Forty-one (level I/II) athletes 2 years after ACLR participated in this cross-sectional study and completed motion analysis testing of DJ. Proportional contribution of the joints (foot, ankle, knee, and hip) to the absorbed energy were computed. Posterior-anterior bent-knee radiographs were completed and graded in the medial compartment of the reconstructed knee using the Kellgren-Lawrence (KL) system (OA group: KL ≥2; Non-OA group: KL<2) RESULTS: Thirteen (31.7%) athletes showed radiological signs of knee OA in the medial compartment. There was a significant joint-by-group-by-limb interaction for the contribution of joints to absorbed energy during DJ 40 cm (p ≤ 0.019) and a joint-by-group interaction for the contribution of joints during DJ 20 cm (p = 0.018). The OA group had a lower involved knee (p = 0.043) and higher involved hip contributions (p = 0.014) compared to the Non-OA group, and the non-involved knee (p = 0.007). While the Non-OA group had a lower involved ankle contribution (p = 0.045) compared to their non-involved ankle during DJ 40 cm. The OA group also had higher involved hip contribution than the Non-OA group (p = 0.010), lower involved knee (p = 0.002), and higher involved hip contribution than the non-involved limb during DJ 20 cm. SIGNIFICANCE The OA group may have adopted a compensatory pattern characterized by a decreased involved knee and increased involved hip to attenuate absorbed energy compared to the Non-OA group and their non-involved limb. The contribution of joints to the absorbed energy during DJ landing might be used as an assessment tool to identify patients with radiological signs of knee OA after ACLR.
Collapse
Affiliation(s)
- Zakariya H Nawasreh
- Department of Rehabilitation Sciences, Jordan University of Science and Technology (JUST), P.O. Box 3030, Irbid 22110, Jordan.
| | - Mohammad A Yabroudi
- Department of Rehabilitation Sciences, Jordan University of Science and Technology (JUST), P.O. Box 3030, Irbid 22110, Jordan
| | - Anan Al-Shdifat
- Department of Rehabilitation Sciences, Jordan University of Science and Technology (JUST), P.O. Box 3030, Irbid 22110, Jordan
| | - Sharf Daradkeh
- Department of Rehabilitation Sciences, Jordan University of Science and Technology (JUST), P.O. Box 3030, Irbid 22110, Jordan
| | - Mohamed Kassas
- Department of Rehabilitation Sciences, Jordan University of Science and Technology (JUST), P.O. Box 3030, Irbid 22110, Jordan
| | - Khaldoon Bashaireh
- Jordan University of Science and Technology (JUST), Department of Special Surgery, College of Medicine, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
3
|
Erhart-Hledik JC, Titchenal MR, Migliore E, Asay JL, Andriacchi TP, Chu CR. Cartilage oligomeric matrix protein responses to a mechanical stimulus associate with ambulatory loading in individuals with anterior cruciate ligament reconstruction. J Orthop Res 2022; 40:791-798. [PMID: 34185322 DOI: 10.1002/jor.25121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 01/07/2021] [Accepted: 06/09/2021] [Indexed: 02/04/2023]
Abstract
Mechanical factors have been implicated in the development of osteoarthritis after anterior cruciate ligament (ACL) reconstruction. This study tested for associations between ambulatory joint loading (total joint moment [TJM] and vertical ground reaction force [vGRF]) and changes in serum levels of cartilage oligomeric matrix protein (COMP) in response to a mechanical stimulus (30-min walk) in individuals with ACL reconstruction. Twenty-five subjects (mean age: 34.5 ± 9.8 years; 2.2 ± 0.2 years post-surgery) with primary unilateral ACL reconstruction underwent gait analysis for assessment of peak vGRF and TJM first (TJM1) and second (TJM2) peaks. Serum COMP concentrations were measured by enzyme-linked immunosorbent assay immediately before, 3.5 h, and 5.5 h after a 30-min walk. Pearson correlation coefficients and backward stepwise multiple linear regression analysis, with adjustments for age, sex, body mass index, and between-limb speed difference, assessed associations between changes in COMP and between-limb differences in joint loading parameters. Greater TJM1 (R = 0.542, p = 0.005), TJM2 (R = 0.460, p = 0.021), and vGRF (R = 0.577, p = 0.003) in the ACL-reconstructed limb as compared to the contralateral limb were associated with higher COMP values 3.5 h following the 30-min walk. Change in COMP at 5.5 h became a significant predictor of the between-limb difference in TJM1 and vGRF in multivariate analyses after accounting for the between-limb speed difference. These results demonstrate that higher TJM and vGRF in the ACLR limb as compared to the contralateral limb are associated with higher relative COMP levels 3.5 and 5.5 h after a 30-min walk. Future work should investigate the effect of therapies to alter joint loading on the biological response in individuals after ACL reconstruction.
Collapse
Affiliation(s)
- Jennifer C Erhart-Hledik
- Department of Orthopaedic Surgery, Stanford University Medical Center, Stanford, California, USA.,Palo Alto Veterans Hospital, Palo Alto, California, USA
| | - Matthew R Titchenal
- Department of Orthopaedic Surgery, Stanford University Medical Center, Stanford, California, USA.,Palo Alto Veterans Hospital, Palo Alto, California, USA.,Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Eleonora Migliore
- Department of Orthopaedic Surgery, Stanford University Medical Center, Stanford, California, USA.,Palo Alto Veterans Hospital, Palo Alto, California, USA
| | - Jessica L Asay
- Palo Alto Veterans Hospital, Palo Alto, California, USA.,Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Thomas P Andriacchi
- Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Constance R Chu
- Department of Orthopaedic Surgery, Stanford University Medical Center, Stanford, California, USA.,Palo Alto Veterans Hospital, Palo Alto, California, USA
| |
Collapse
|
4
|
Mechanical Cues: Bidirectional Reciprocity in the Extracellular Matrix Drives Mechano-Signalling in Articular Cartilage. Int J Mol Sci 2021; 22:ijms222413595. [PMID: 34948394 PMCID: PMC8707858 DOI: 10.3390/ijms222413595] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 12/29/2022] Open
Abstract
The composition and organisation of the extracellular matrix (ECM), particularly the pericellular matrix (PCM), in articular cartilage is critical to its biomechanical functionality; the presence of proteoglycans such as aggrecan, entrapped within a type II collagen fibrillar network, confers mechanical resilience underweight-bearing. Furthermore, components of the PCM including type VI collagen, perlecan, small leucine-rich proteoglycans—decorin and biglycan—and fibronectin facilitate the transduction of both biomechanical and biochemical signals to the residing chondrocytes, thereby regulating the process of mechanotransduction in cartilage. In this review, we summarise the literature reporting on the bidirectional reciprocity of the ECM in chondrocyte mechano-signalling and articular cartilage homeostasis. Specifically, we discuss studies that have characterised the response of articular cartilage to mechanical perturbations in the local tissue environment and how the magnitude or type of loading applied elicits cellular behaviours to effect change. In vivo, including transgenic approaches, and in vitro studies have illustrated how physiological loading maintains a homeostatic balance of anabolic and catabolic activities, involving the direct engagement of many PCM molecules in orchestrating this slow but consistent turnover of the cartilage matrix. Furthermore, we document studies characterising how abnormal, non-physiological loading including excessive loading or joint trauma negatively impacts matrix molecule biosynthesis and/or organisation, affecting PCM mechanical properties and reducing the tissue’s ability to withstand load. We present compelling evidence showing that reciprocal engagement of the cells with this altered ECM environment can thus impact tissue homeostasis and, if sustained, can result in cartilage degradation and onset of osteoarthritis pathology. Enhanced dysregulation of PCM/ECM turnover is partially driven by mechanically mediated proteolytic degradation of cartilage ECM components. This generates bioactive breakdown fragments such as fibronectin, biglycan and lumican fragments, which can subsequently activate or inhibit additional signalling pathways including those involved in inflammation. Finally, we discuss how bidirectionality within the ECM is critically important in enabling the chondrocytes to synthesise and release PCM/ECM molecules, growth factors, pro-inflammatory cytokines and proteolytic enzymes, under a specified load, to influence PCM/ECM composition and mechanical properties in cartilage health and disease.
Collapse
|
5
|
Herger S, Vach W, Liphardt AM, Nüesch C, Egloff C, Mündermann A. Experimental-analytical approach to assessing mechanosensitive cartilage blood marker kinetics in healthy adults: dose-response relationship and interrelationship of nine candidate markers. F1000Res 2021; 10:490. [PMID: 35284064 PMCID: PMC8907551 DOI: 10.12688/f1000research.52159.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 11/20/2022] Open
Abstract
Purpose: To determine the suitability of selected blood biomarkers of articular cartilage as mechanosensitive markers and to investigate the dose-response relationship between ambulatory load magnitude and marker kinetics in response to load. Methods: Serum samples were collected from 24 healthy volunteers before and at three time points after a 30-minute walking stress test performed on three test days. In each experimental session, one of three ambulatory loads was applied: 100% body weight (BW); 80%BW; 120%BW. Serum concentrations of COMP, MMP-3, MMP-9, ADAMTS-4, PRG-4, CPII, C2C and IL-6 were assessed using commercial enzyme-linked immunosorbent assays. A two-stage analytical approach was used to determine the suitability of a biomarker by testing the response to the stress test (criterion I) and the dose-response relationship between ambulatory load magnitude and biomarker kinetics (criterion II). Results. COMP, MMP-3 and IL-6 at all three time points after, MMP-9 at 30 and 60 minutes after, and ADAMTS-4 and CPII at immediately after the stress test showed an average response to load or an inter-individual variation in response to load of up to 25% of pre-test levels. The relation to load magnitude on average or an inter-individual variation in this relationship was up to 8% from load level to load level. There was a positive correlation for the slopes of the change-load relationship between COMP and MMP-3, and a negative correlation for the slopes between COMP, MMP-3 and IL-6 with MMP-9, and COMP with IL6. Conclusions: COMP, MMP-3, IL-6, MMP-9, and ADAMTS-4 warrant further investigation in the context of articular cartilage mechanosensitivity and its role in joint degeneration and OA. While COMP seems to be able to reflect a rapid response, MMP-3 seems to reflect a slightly longer lasting, but probably also more distinct response. MMP-3 showed also the strongest association with the magnitude of load.
Collapse
Affiliation(s)
- Simon Herger
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Spine Surgery, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, BL, 4123, Switzerland
| | - Werner Vach
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Clinical Research, University of Basel, Basel, BS, 4031, Switzerland
- Basel Academy for Quality and Research in Medicine, Basel, Switzerland
| | - Anna-Maria Liphardt
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Corina Nüesch
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Spine Surgery, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, BL, 4123, Switzerland
- Department of Clinical Research, University of Basel, Basel, BS, 4031, Switzerland
| | - Christian Egloff
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, BS, 4031, Switzerland
| | - Annegret Mündermann
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Spine Surgery, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, BL, 4123, Switzerland
- Department of Clinical Research, University of Basel, Basel, BS, 4031, Switzerland
| |
Collapse
|
6
|
Herger S, Vach W, Liphardt AM, Nüesch C, Egloff C, Mündermann A. Experimental-analytical approach to assessing mechanosensitive cartilage blood marker kinetics in healthy adults: dose-response relationship and interrelationship of nine candidate markers. F1000Res 2021; 10:490. [PMID: 35284064 PMCID: PMC8907551 DOI: 10.12688/f1000research.52159.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 11/23/2023] Open
Abstract
Purpose: To determine the suitability of selected blood biomarkers of articular cartilage as mechanosensitive markers and to investigate the dose-response relationship between ambulatory load magnitude and marker kinetics in response to load. Methods: Serum samples were collected from 24 healthy volunteers before and at three time points after a 30-minute walking stress test performed on three test days. In each experimental session, one of three ambulatory loads was applied: 100% body weight (BW); 80%BW; 120%BW. Serum concentrations of COMP, MMP-3, MMP-9, ADAMTS-4, PRG-4, CPII, C2C and IL-6 were assessed using commercial enzyme-linked immunosorbent assays. A two-stage analytical approach was used to determine the suitability of a biomarker by testing the response to the stress test (criterion I) and the dose-response relationship between ambulatory load magnitude and biomarker kinetics (criterion II). Results. COMP, MMP-3 and IL-6 at all three time points after, MMP-9 at 30 and 60 minutes after, and ADAMTS-4 and CPII at immediately after the stress test showed an average response to load or an inter-individual variation in response to load of up to 25% of pre-test levels. The relation to load magnitude on average or an inter-individual variation in this relationship was up to 8% from load level to load level. There was a positive correlation for the slopes of the change-load relationship between COMP and MMP-3, and a negative correlation for the slopes between COMP, MMP-3 and IL-6 with MMP-9, and COMP with IL6. Conclusions: COMP, MMP-3, IL-6, MMP-9, and ADAMTS-4 warrant further investigation in the context of articular cartilage mechanosensitivity and its role in joint degeneration and OA. While COMP seems to be able to reflect a rapid response, MMP-3 seems to reflect a slightly longer lasting, but probably also more distinct response. MMP-3 showed also the strongest association with the magnitude of load.
Collapse
Affiliation(s)
- Simon Herger
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Spine Surgery, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, BL, 4123, Switzerland
| | - Werner Vach
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Clinical Research, University of Basel, Basel, BS, 4031, Switzerland
- Basel Academy for Quality and Research in Medicine, Basel, Switzerland
| | - Anna-Maria Liphardt
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Corina Nüesch
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Spine Surgery, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, BL, 4123, Switzerland
- Department of Clinical Research, University of Basel, Basel, BS, 4031, Switzerland
| | - Christian Egloff
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, BS, 4031, Switzerland
| | - Annegret Mündermann
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Spine Surgery, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, BL, 4123, Switzerland
- Department of Clinical Research, University of Basel, Basel, BS, 4031, Switzerland
| |
Collapse
|
7
|
Davis S, Roldo M, Blunn G, Tozzi G, Roncada T. Influence of the Mechanical Environment on the Regeneration of Osteochondral Defects. Front Bioeng Biotechnol 2021; 9:603408. [PMID: 33585430 PMCID: PMC7873466 DOI: 10.3389/fbioe.2021.603408] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Articular cartilage is a highly specialised connective tissue of diarthrodial joints which provides a smooth, lubricated surface for joint articulation and plays a crucial role in the transmission of loads. In vivo cartilage is subjected to mechanical stimuli that are essential for cartilage development and the maintenance of a chondrocytic phenotype. Cartilage damage caused by traumatic injuries, ageing, or degradative diseases leads to impaired loading resistance and progressive degeneration of both the articular cartilage and the underlying subchondral bone. Since the tissue has limited self-repairing capacity due its avascular nature, restoration of its mechanical properties is still a major challenge. Tissue engineering techniques have the potential to heal osteochondral defects using a combination of stem cells, growth factors, and biomaterials that could produce a biomechanically functional tissue, representative of native hyaline cartilage. However, current clinical approaches fail to repair full-thickness defects that include the underlying subchondral bone. Moreover, when tested in vivo, current tissue-engineered grafts show limited capacity to regenerate the damaged tissue due to poor integration with host cartilage and the failure to retain structural integrity after insertion, resulting in reduced mechanical function. The aim of this review is to examine the optimal characteristics of osteochondral scaffolds. Additionally, an overview on the latest biomaterials potentially able to replicate the natural mechanical environment of articular cartilage and their role in maintaining mechanical cues to drive chondrogenesis will be detailed, as well as the overall mechanical performance of grafts engineered using different technologies.
Collapse
Affiliation(s)
- Sarah Davis
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Marta Roldo
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, United Kingdom
| | - Tosca Roncada
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
8
|
Abstract
The human elbow is a complex joint that is essential for activities of daily living requiring the upper extremities; however, this complexity generates significant challenges when considering its response to injury and management of treatment. The current understanding of elbow injury and pathologies lags behind that of other joints and musculoskeletal tissues. Most research on the elbow joint is mainly focused on the late-stage disease states when irreversible damage has occurred. Consequentially, the specific contribution and relative time course of different elbow tissues in disease progression, as well as optimized approaches for treating such conditions, remains largely unknown. Given the challenge of studying elbow pathologies in humans, preclinical models can serve as ideal alternatives. However, a limited number of preclinical models exist to investigate elbow injury and pathology. This review highlights significant clinical elbow diseases and the preclinical models currently available to recapitulate these diseases, while also providing recommendations for the development of future preclinical models. Overall, this review will serve as a guide for preclinical models studying injuries and pathologies of the elbow, with the long-term goal of developing novel intervention strategies to improve the treatment of elbow diseases in human patients.
Collapse
Affiliation(s)
- Michael A. David
- Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO
| | | | - Spencer P. Lake
- Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO
- Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO
- Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
9
|
Armitano-Lago C, Pietrosimone B, Davis-Wilson HC, Evans-Pickett A, Franz JR, Blackburn T, Kiefer AW. Biofeedback augmenting lower limb loading alters the underlying temporal structure of gait following anterior cruciate ligament reconstruction. Hum Mov Sci 2020; 73:102685. [DOI: 10.1016/j.humov.2020.102685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 11/28/2022]
|
10
|
Liu S, Wu D, Sun X, Fan Y, Zha R, Jalali A, Teli M, Sano T, Siegel A, Sudo A, Agarwal M, Robling A, Li BY, Yokota H. Mechanical stimulations can inhibit local and remote tumor progression by downregulating WISP1. FASEB J 2020; 34:12847-12859. [PMID: 32744779 DOI: 10.1096/fj.202000713rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 12/27/2022]
Abstract
Mechanical stimulations can prevent bone loss, but their effects on the tumor-invaded bone or solid tumors are elusive. Here, we evaluated the effect of knee loading, dynamic loads applied to the knee, on metastasized bone and mammary tumors. In a mouse model, tumor cells were inoculated to the mammary fat pad or the proximal tibia. Daily knee loading was then applied and metabolic changes were monitored mainly through urine. Urine samples were also collected from human subjects before and after step aerobics. The result showed that knee loading inhibited tumor progression in the loaded tibia. Notably, it also reduced remotely the growth of mammary tumors. In the urine, an altered level of cholesterol was observed with an increase in calcitriol, which is synthesized from a cholesterol derivative. In urinary proteins, knee loading in mice and step aerobics in humans markedly reduced WNT1-inducible signaling pathway protein 1, WISP1, which leads to poor survival among patients with breast cancer. In the ex vivo breast cancer tissue assay, WISP1 promoted the growth of cancer fragments and upregulated tumor-promoting genes, such as Runx2, MMP9, and Snail. Collectively, the present preclinical and human study demonstrated that mechanical stimulations, such as knee loading and step aerobics, altered urinary metabolism and downregulated WISP1. The study supports the benefit of mechanical stimulations for locally and remotely suppressing tumor progression. It also indicated the role of WISP1 downregulation as a potential mechanism of loading-driven tumor suppression.
Collapse
Affiliation(s)
- Shengzhi Liu
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Di Wu
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Xun Sun
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Yao Fan
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Rongrong Zha
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Aydin Jalali
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Meghana Teli
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Tomohiko Sano
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Orthopedic Surgery, Mie University, Mie, Japan
| | - Amanda Siegel
- Integrated Nanosystems Development Institute, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Akihiro Sudo
- Department of Orthopedic Surgery, Mie University, Mie, Japan
| | - Mangilal Agarwal
- Integrated Nanosystems Development Institute, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Mechanical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Alexander Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China.,Integrated Nanosystems Development Institute, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Mechanical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.,Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
11
|
Evans-Pickett A, Davis-Wilson HC, Luc-Harkey BA, Blackburn JT, Franz JR, Padua DA, Seeley MK, Pietrosimone B. Biomechanical effects of manipulating peak vertical ground reaction force throughout gait in individuals 6-12 months after anterior cruciate ligament reconstruction. Clin Biomech (Bristol, Avon) 2020; 76:105014. [PMID: 32388079 PMCID: PMC8658526 DOI: 10.1016/j.clinbiomech.2020.105014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/15/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND We aimed to determine the effect of cueing an increase or decrease in the vertical ground reaction force impact peak (peak in the first 50% of stance) on vertical ground reaction force, knee flexion angle, internal knee extension moment, and internal knee abduction moment waveforms throughout stance in individuals 6-12 months after an anterior cruciate ligament reconstruction. METHODS Twelve individuals completed 3 conditions (High, Low, and Control) where High and Low Conditions cue a 5% body weight increase or decrease, respectively, in the vertical ground reaction force impact peak compared to usual walking. Biomechanics during High and Low Conditions were compared to the Control Condition throughout stance. FINDINGS The High Condition resulted in: (a) increased vertical ground reaction forces at each peak and decreased during mid-stance, (b) greater knee excursion (i.e., greater knee flexion angle in early stance and a more extended knee in late stance), (c) greater internal extension moment for the majority of stance, and (d) lesser second internal knee abduction moment peak. The Low Condition resulted in: (a) vertical ground reaction forces decreased during early stance and increased during mid-stance, (b) decreased knee excursion, (c) increased internal extension moment throughout stance, and (d) decreased internal knee abduction moment peaks. INTERPRETATION Cueing a 5% body weight increase in vertical ground reaction force impact peak resulted in a more dynamic vertical ground reaction force loading pattern, increased knee excursion, and a greater internal extension moment during stance which may be useful in restoring gait patterns following anterior cruciate ligament reconstruction.
Collapse
Affiliation(s)
- Alyssa Evans-Pickett
- MOTION Science Institute, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Hope C Davis-Wilson
- MOTION Science Institute, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Brittney A Luc-Harkey
- Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - J Troy Blackburn
- MOTION Science Institute, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, NC, United States
| | - Darin A Padua
- MOTION Science Institute, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Matthew K Seeley
- Department of Exercise Sciences, Brigham Young University, Provo, UT, United States
| | - Brian Pietrosimone
- MOTION Science Institute, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
12
|
Shultz SJ, Schmitz RJ, Cameron KL, Ford KR, Grooms DR, Lepley LK, Myer GD, Pietrosimone B. Anterior Cruciate Ligament Research Retreat VIII Summary Statement: An Update on Injury Risk Identification and Prevention Across the Anterior Cruciate Ligament Injury Continuum, March 14-16, 2019, Greensboro, NC. J Athl Train 2019; 54:970-984. [PMID: 31461312 PMCID: PMC6795093 DOI: 10.4085/1062-6050-54.084] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sandra J. Shultz
- Applied Neuromechanics Research Laboratory, University of North Carolina at Greensboro
| | - Randy J. Schmitz
- Applied Neuromechanics Research Laboratory, University of North Carolina at Greensboro
| | - Kenneth L. Cameron
- John A. Feagin Jr Sports Medicine Fellowship, Keller Army Hospital, United States Military Academy, West Point, NY
| | - Kevin R. Ford
- Human Biomechanics and Physiology Laboratory, Department of Physical Therapy, High Point University, NC
| | - Dustin R. Grooms
- Ohio Musculoskeletal & Neurological Institute and Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens
| | | | - Gregory D. Myer
- The SPORT Center, Division of Sports Medicine, and Departments of Pediatrics and Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, OH
| | - Brian Pietrosimone
- MOTION Science Institute, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill
| |
Collapse
|
13
|
Pietrosimone B, Seeley MK, Johnston C, Pfeiffer SJ, Spang JT, Blackburn JT. Walking Ground Reaction Force Post-ACL Reconstruction: Analysis of Time and Symptoms. Med Sci Sports Exerc 2019; 51:246-254. [PMID: 30157111 DOI: 10.1249/mss.0000000000001776] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE The association between lower-extremity loading and clinically relevant knee symptoms at different time points after anterior cruciate ligament reconstruction (ACLR) is unclear. Vertical ground reaction force (vGRF) from walking was compared between individuals with and without clinically relevant knee symptoms in three cohorts: <12 months post-ACLR, 12-24 months post-ACLR, and >24 months post-ACLR. METHODS One hundred twenty-eight individuals with unilateral ACLR were classified as symptomatic or asymptomatic, based on previously defined cutoff values for the Knee Osteoarthritis and Injury Outcome Score (<12 months post-ACLR [symptomatic n = 28, asymptomatic n = 24]; 12-24 months post-ACLR [symptomatic n = 15, asymptomatic n = 15], and >24 months post-ACLR [symptomatic, n = 13; asymptomatic, n = 33]). Vertical ground reaction force exerted on the ACLR limb was collected during walking gait, and functional analyses of variance were used to evaluate the effects of symptoms and time post-ACLR on vGRF throughout stance phase (α = 0.05). RESULTS Symptomatic individuals, <12 months post-ACLR, demonstrated less vGRF during both vGRF peaks (i.e., weight acceptance and propulsion) and greater vGRF during midstance, compared to asymptomatic individuals. Vertical ground reaction force characteristics were not different between symptomatic and asymptomatic individuals for most of stance in individuals between 12 and 24 months post-ACLR. Symptomatic individuals who were >24 months post-ACLR, exhibited greater vGRF during both peaks, but lesser vGRF during midstance, compared to asymptomatic individuals. CONCLUSION Relative to asymptomatic individuals, symptomatic individuals are more likely to underload the ACLR limb early after ACLR (i.e., <12 months) during both vGRF peaks, but overload the ACLR limb, during both vGRF peaks, at later time points (i.e., >24 months). We propose these differences in lower-extremity loading during walking might have implications for long-term knee health, and should be considered when designing therapeutic interventions for individuals with an ACLR.
Collapse
Affiliation(s)
- Brian Pietrosimone
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Matthew K Seeley
- Department of Exercise Sciences, Brigham Young University, Provo, UT
| | - Christopher Johnston
- Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Steven J Pfeiffer
- Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jeffery T Spang
- Department of Orthopaedics, School of Medicine, University of North Carolina at Chapel Hill, NC
| | - J Troy Blackburn
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
14
|
Jiang F, Jalali A, Deguchi C, Chen A, Liu S, Kondo R, Minami K, Horiuchi T, Li BY, Robling AG, Chen J, Yokota H. Finite-element analysis of the mouse proximal ulna in response to elbow loading. J Bone Miner Metab 2019; 37:419-429. [PMID: 30062431 PMCID: PMC6353704 DOI: 10.1007/s00774-018-0943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
Abstract
Bone is a mechano-sensitive tissue that alters its structure and properties in response to mechanical loading. We have previously shown that application of lateral dynamic loads to a synovial joint, such as the knee and elbow, suppresses degradation of cartilage and prevents bone loss in arthritis and postmenopausal mouse models, respectively. While loading effects on pathophysiology have been reported, mechanical effects on the loaded joint are not fully understood. Because the direction of joint loading is non-axial, not commonly observed in daily activities, strain distributions in the laterally loaded joint are of great interest. Using elbow loading, we herein characterized mechanical responses in the loaded ulna focusing on the distribution of compressive strain. In response to 1-N peak-to-peak loads, which elevate bone mineral density and bone volume in the proximal ulna in vivo, we conducted finite-element analysis and evaluated strain magnitude in three loading conditions. The results revealed that strain of ~ 1000 μstrain (equivalent to 0.1% compression) or above was observed in the limited region near the loading site, indicating that the minimum effective strain for bone formation is smaller with elbow loading than axial loading. Calcein staining indicated that elbow loading increased bone formation in the regions predicted to undergo higher strain.
Collapse
Affiliation(s)
- Feifei Jiang
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Aydin Jalali
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN, 46202, USA
| | - Chie Deguchi
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN, 46202, USA
- Graduate School of Engineering, Mie University, Mie, 514, Japan
| | - Andy Chen
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN, 46202, USA
| | - Shengzhi Liu
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN, 46202, USA
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Rika Kondo
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN, 46202, USA
- Osaka University Graduate School of Medicine, Suita, Osaka, 565, Japan
| | - Kazumasa Minami
- Osaka University Graduate School of Medicine, Suita, Osaka, 565, Japan
| | | | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Alexander G Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jie Chen
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Hiroki Yokota
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN, 46202, USA.
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
15
|
He Z, Leong DJ, Xu L, Hardin JA, Majeska RJ, Schaffler MB, Thi MM, Yang L, Goldring MB, Cobelli NJ, Sun HB. CITED2 mediates the cross-talk between mechanical loading and IL-4 to promote chondroprotection. Ann N Y Acad Sci 2019; 1442:128-137. [PMID: 30891766 PMCID: PMC6956611 DOI: 10.1111/nyas.14021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/04/2018] [Accepted: 01/16/2019] [Indexed: 01/28/2023]
Abstract
Osteoarthritis (OA) pathogenesis is mediated largely through the actions of proteolytic enzymes such as matrix metalloproteinase (MMP) 13. The transcriptional regulator CITED2, which suppresses the expression of MMP13 in chondrocytes, is induced by interleukin (IL)-4 in T cells and macrophages, and by moderate mechanical loading in chondrocytes. We tested the hypothesis that CITED2 mediates cross-talk between IL-4 signaling and mechanical loading-induced pathways that result in chondroprotection, at least in part, by downregulating MMP13. IL-4 induced CITED2 gene expression in human chondrocytes in a dose- and time-dependent manner through JAK/STAT signaling. Mechanical loading combined with IL-4 resulted in additive effects on inducing CITED2 expression and downregulating of MMP13 in human chondrocytes in vitro. In vivo, IL-4 gene knockout (KO) mice exhibited reduced basal levels of CITED2 expression in chondrocytes. While moderate treadmill running induced CITED2 expression and reduced MMP13 expression in wild-type mice, these effects were blunted (for CITED2) or abolished (for MMP13) in chondrocytes of IL-4 gene KO mice. Moreover, intra-articular injections of mouse recombinant IL-4 combined with regular cage activity mitigated post-traumatic OA to a greater degree compared to immobilized mice treated with IL-4 alone. These data suggest that using moderate loading to enhance IL-4 may be a potential therapeutic strategy for chondroprotection in OA.
Collapse
Affiliation(s)
- Zhiyong He
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Daniel J. Leong
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Lin Xu
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - John A. Hardin
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York
| | - Robert J. Majeska
- Department of Biomedical Engineering, The City College of New York, New York, New York
| | - Mitchell B. Schaffler
- Department of Biomedical Engineering, The City College of New York, New York, New York
| | - Mia M. Thi
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Liu Yang
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington
| | - Mary B. Goldring
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, and Weill Cornell Medical College, New York, New York
| | - Neil J. Cobelli
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York
| | - Hui B. Sun
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
16
|
Liu L, He Z, Xu L, Lu L, Feng H, Leong DJ, Kim SJ, Hirsh DM, Majeska RJ, Goldring MB, Cobelli NJ, Sun HB. CITED2 mediates the mechanical loading-induced suppression of adipokines in the infrapatellar fat pad. Ann N Y Acad Sci 2019; 1442:153-164. [PMID: 30891782 DOI: 10.1111/nyas.14025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022]
Abstract
Adipokines secreted from the infrapatellar fat pad (IPFP), such as adipsin and adiponectin, have been implicated in osteoarthritis pathogenesis. CITED2, a mechanosensitive transcriptional regulator with chondroprotective activity, may modulate their expression. Cited2 haploinsufficient mice (Cited2+/- ) on a high-fat diet (HFD) exhibited increased body weight and increased IPFP area compared to wild-type (WT) mice on an HFD. While an exercise regimen of moderate treadmill running induced the expression of CITED2, as well as PGC-1α, and reduced the expression of adipsin and adiponectin in the IPFP of WT mice on an HFD, Cited2 haploinsufficiency abolished the loading-induced expression of PGC-1α and loading-induced suppression of adipsin and adiponectin. Furthermore, knocking down or knocking out CITED2 in adipose stem cells (ASCs)/preadipocytes derived from the IPFP in vitro led to the increased expression of adipsin and adiponectin and reduced PGC-1α, and abolished the loading-induced suppression of adipsin and adiponectin and loading-induced expression of PGC-1α. Overexpression of PGC-1α in these ASC/preadipocytes reversed the effects caused by CITED2 deficiency. The current data suggest that CITED2 is a critical regulator in physiologic loading-induced chondroprotection in the context of an HFD and PGC-1α is required for the inhibitory effects of CITED2 on the expression of adipokines such as adipsin and adiponectin in the IPFP.
Collapse
Affiliation(s)
- Lidi Liu
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York.,Department of Spine Surgery, Jilin Provincial Key Laboratory of Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Jilin, China
| | - Zhiyong He
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York.,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Lin Xu
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York.,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Laijin Lu
- Department of Hand Surgery, Jilin Provincial Key Laboratory of Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Jilin, China
| | - Haotian Feng
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York.,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Daniel J Leong
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York.,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Sun J Kim
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York
| | - David M Hirsh
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York
| | - Robert J Majeska
- Department of Biomedical Engineering, The City College of New York, New York City, New York
| | - Mary B Goldring
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, and Weill Cornell Medical College, New York City, New York
| | - Neil J Cobelli
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York
| | - Hui B Sun
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York.,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
17
|
Zheng W, Li X, Liu D, Li J, Yang S, Gao Z, Wang Z, Yokota H, Zhang P. Mechanical loading mitigates osteoarthritis symptoms by regulating endoplasmic reticulum stress and autophagy. FASEB J 2019; 33:4077-4088. [PMID: 30485126 PMCID: PMC6404578 DOI: 10.1096/fj.201801851r] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/05/2018] [Indexed: 12/30/2022]
Abstract
Osteoarthritis (OA) is a disease characterized by cartilage damage and abnormal remodeling of subchondral bone. Our previous study showed that in the early stage of OA, knee loading exerts protective effects by suppressing osteoclastogenesis through Wnt signaling, but little is known about loading effects at the late OA stage. Endoplasmic reticulum (ER) stress and autophagy are known to be involved in the late OA stage. We determined the effects of mechanical loading on ER stress and autophagy in OA mice. One hundred seventy-four mice were used for a surgery-induced OA model. In the first set of experiments, 60 mice were devoted to evaluation of the role of ER stress and autophagy in the development of OA. In the second set, 114 mice were used to assess the effect of knee loading on OA. Histologic, cellular, microcomputed tomography, and electron microscopic analyses were performed to evaluate morphologic changes, ER stress, and autophagy. Mechanical loading increased phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) and regulated expressions of autophagy markers LC3II/I and p62. Osteoarthritic mice also exhibited an elevated ratio of calcified cartilage to total articular cartilage (CC/TAC), and synovial hyperplasia with increased lining cells was found. At the early disease stage, subchondral bone plate thinning and reduced subchondral bone volume fraction (B.Ar/T.Ar) were observed. At the late disease stages, subchondral bone plate thickened concomitant with increased B.Ar/T.Ar. Mice subjected to mechanical loading exhibited resilience to cartilage destruction and a correspondingly reduced Osteoarthritis Research Society International score at 4 and 8 wk, as well as a decrease in synovitis and CC/TAC. While chondrocyte numbers in the OA group was notably decreased, mechanical loading restored chondrogenic differentiation. These results demonstrate that mechanical loading can retard the pathologic progression of OA at its early and late stages. The observed effects of loading are associated with the regulations of ER stress and autophagy.-Zheng, W., Li, X., Liu, D., Li, J., Yang, S., Gao, Z., Wang, Z., Yokota, H., Zhang, P. Mechanical loading mitigates osteoarthritis symptoms by regulating endoplasmic reticulum stress and autophagy.
Collapse
Affiliation(s)
- Weiwei Zheng
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Tianjin Economic-Technological Development Area, International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Key Laboratory of Hormones and Development, Ministry of Health, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Tianjin Economic-Technological Development Area, International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Key Laboratory of Hormones and Development, Ministry of Health, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Tianjin Economic-Technological Development Area, International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shuang Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Tianjin Economic-Technological Development Area, International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhe Gao
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhaonan Wang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University–Purdue University Indianapolis, Indiana, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Tianjin Economic-Technological Development Area, International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Key Laboratory of Hormones and Development, Ministry of Health, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
- Department of Biomedical Engineering, Indiana University–Purdue University Indianapolis, Indiana, USA
| |
Collapse
|
18
|
Nakagawa Y, Lebaschi AH, Wada S, E. Green SJ, Wang D, Album ZM, Carballo CB, Deng XH, Rodeo SA. Duration of postoperative immobilization affects MMP activity at the healing graft-bone interface: Evaluation in a mouse ACL reconstruction model. J Orthop Res 2019; 37:325-334. [PMID: 30431170 PMCID: PMC6411439 DOI: 10.1002/jor.24177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/22/2018] [Indexed: 02/04/2023]
Abstract
Excessive MMP activity may impair tendon-to-bone healing. However, little is known about the effect of joint motion on MMP activity after ACL reconstruction. The aim of this study was to determine the effect of different durations of knee immobilization on MMP activity in a mouse ACL reconstruction model using a fluorescent MMP probe which detects MMP 2, 3, 9, and 13 and near-infra red in vivo imaging. Sixty C57BL male mice underwent ACL reconstruction. Post-operatively, the animals were treated with free cage activity (Group 1), or with the use of an external fixator to restrict knee motion and weight bearing for 5 days (Group 2), 14 days (Group 3), and 28 days (Group 4). At days 3, 7, 16, 23, and 30, five mice underwent IVIS imaging. At days 3, 7, 16, and 30, histological analysis was also performed. Probe signal intensity in the whole limb peaked at day 7, followed by a decrease at day 16, and maintenance up to day 30. There was no significant difference among groups at any time point based on IVIS, but histologic localization of MMP probe signal showed significantly less activity in Group 2 and Group 3 compared to Group 4 in the bone tunnel at day 30. We demonstrated that short-term immobilization led to less MMP activity around the bone tunnel compared with prolonged immobilization. A short period of immobilization after ACL reconstruction might enhance graft-bone interface healing by mitigating excess MMP expression. These findings have implications for post-operative rehabilitation protocols following ACL reconstruction. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:325-334, 2019.
Collapse
Affiliation(s)
- Yusuke Nakagawa
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research, Hospital for Special Surgery, 535 East 70th Street, New York 10021, New York,Department of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo, Japan
| | - Amir H. Lebaschi
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research, Hospital for Special Surgery, 535 East 70th Street, New York 10021, New York
| | - Susumu Wada
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research, Hospital for Special Surgery, 535 East 70th Street, New York 10021, New York
| | - Samuel J E. Green
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research, Hospital for Special Surgery, 535 East 70th Street, New York 10021, New York
| | - Dean Wang
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research, Hospital for Special Surgery, 535 East 70th Street, New York 10021, New York
| | - Zoe M. Album
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research, Hospital for Special Surgery, 535 East 70th Street, New York 10021, New York
| | - Camilla B. Carballo
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research, Hospital for Special Surgery, 535 East 70th Street, New York 10021, New York
| | - Xiang-Hua Deng
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research, Hospital for Special Surgery, 535 East 70th Street, New York 10021, New York
| | - Scott A. Rodeo
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research, Hospital for Special Surgery, 535 East 70th Street, New York 10021, New York
| |
Collapse
|
19
|
Luc-Harkey BA, Franz JR, Hackney AC, Blackburn JT, Padua DA, Pietrosimone B. Lesser lower extremity mechanical loading associates with a greater increase in serum cartilage oligomeric matrix protein following walking in individuals with anterior cruciate ligament reconstruction. Clin Biomech (Bristol, Avon) 2018; 60:13-19. [PMID: 30292062 DOI: 10.1016/j.clinbiomech.2018.09.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Aberrant mechanical loading during gait is hypothesized to contribute to the development of posttraumatic osteoarthritis following anterior cruciate ligament reconstruction. Our purpose was to determine if peak vertical ground reaction force and instantaneous vertical ground reaction force loading rate associate with the acute change in serum cartilage oligomeric matrix protein following a 20-minute bout of walking. METHODS We enrolled thirty individuals with a unilateral anterior cruciate ligament reconstruction. Peak vertical ground reaction force and instantaneous vertical ground reaction force loading rate were extracted from the first 50% of the stance phase of gait during a 60-second trial. Blood samples were collected immediately before and after 20 min of treadmill walking at self-selected speed. The change in serum cartilage oligomeric matrix protein from pre- to post-walking was calculated. Stepwise linear regression models were used to determine the association between each outcome of loading and the change in serum cartilage oligomeric matrix protein after accounting for sex, gait speed, time since anterior cruciate ligament reconstruction, graft type, and history of concomitant meniscal procedure (ΔR2). FINDINGS Lesser peak vertical ground reaction force (ΔR2 = 0.208; β = -0.561; P = 0.019) and instantaneous vertical ground reaction force loading rate (ΔR2 = 0.168; β = -0.519; P = 0.037) on the anterior cruciate ligament reconstructed limb associated with a greater increase in serum cartilage oligomeric matrix protein following 20 min of walking. INTERPRETATION Mechanical loading may be a future therapeutic target for altering the acute biochemical response to walking in individuals with an anterior cruciate ligament reconstruction.
Collapse
Affiliation(s)
- Brittney A Luc-Harkey
- Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States of America.
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States of America
| | - Anthony C Hackney
- Department of Exercise and Sports Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - J Troy Blackburn
- Department of Exercise and Sports Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Darin A Padua
- Department of Exercise and Sports Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Brian Pietrosimone
- Department of Exercise and Sports Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
20
|
Pietrosimone B, Blackburn JT, Padua DA, Pfeiffer SJ, Davis HC, Luc-Harkey BA, Harkey MS, Stanley Pietrosimone L, Frank BS, Creighton RA, Kamath GM, Spang JT. Walking gait asymmetries 6 months following anterior cruciate ligament reconstruction predict 12-month patient-reported outcomes. J Orthop Res 2018; 36:2932-2940. [PMID: 29781550 DOI: 10.1002/jor.24056] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/15/2018] [Indexed: 02/04/2023]
Abstract
The study sought to determine the association between gait biomechanics (vertical ground reaction force [vGRF], vGRF loading rate [vGRF-LR]) collected 6 months following anterior cruciate ligament reconstruction (ACLR) with patient-reported outcomes at 12 months following ACLR. Walking gait biomechanics and all subsections of the Knee Injury and Osteoarthritis Outcomes Score (KOOS) were collected at 6 and 12 months following ACLR, respectively, in 25 individuals with a unilateral ACLR. Peak vGRF and peak instantaneous vGRF-LR were extracted from the first 50% of the stance phase. Limb symmetry indices (LSI) were used to normalize outcomes in the ACLR limb to that of the uninjured limb (ACLR/uninjured). Linear regression analyses were used to determine associations between biomechanical outcomes and KOOS while accounting for walking speed. Receiver operator characteristic curves were used to determine the accuracy of 6-month biomechanical outcomes for identifying individuals with acceptable patient-reported outcomes, using previously defined KOOS cut-off scores, 12 months post-ACLR. Individuals with lower peak vGRF LSI 6 months post-ACLR demonstrated worse patient-reported outcomes (KOOS Pain, Activities of Daily life, Sport and Recreation, Quality of Life) at the 12-month exam. A peak vGRF LSI ≥0.99 6 months following ACLR associated with 13.33× higher odds of reporting acceptable patient-reported outcomes 12 months post-ACLR. Lesser peak vGRF LSI during walking at 6-months post-ACLR may be a critical indicator of worse future patient-reported outcomes. Clinical significance achieving early symmetrical lower extremity loading and minimizing under-loading of the ACLR limb during walking may be a potential therapeutic target for improving patient-reported outcomes post-ACLR. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2932-2940, 2018.
Collapse
Affiliation(s)
- Brian Pietrosimone
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - J Troy Blackburn
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Orthopaedics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Darin A Padua
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Orthopaedics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Steven J Pfeiffer
- Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hope C Davis
- Department of Orthopaedics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Brittney A Luc-Harkey
- Department of Orthopedic Surgery, Orthopedic and Arthritis Center for Outcomes Research, Brigham and Women's Hospital, Boston, Massachusetts
| | - Matthew S Harkey
- Division of Rheumatology, Tufts Medical Center, Boston, Massachusetts
| | - Laura Stanley Pietrosimone
- Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Barnett S Frank
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Robert Alexander Creighton
- Department of Orthopaedics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ganesh M Kamath
- Department of Orthopaedics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jeffery T Spang
- Department of Orthopaedics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
21
|
Abstract
Osteoarthritis is the commonest degenerative joint disease, leading to joint pain and disability. The mouse has been the primary animal used for research, due to its size, relatively short lifespan, and the availability of genetically modified animals. Importantly, they show pathogenesis similar to osteoarthritis in humans. Mechanical loading is a major risk factor for osteoarthritis, and various mouse models have been developed to study the role and effects of mechanics on health and disease in various joints. This review describes the main mouse models used to non-invasively apply mechanical loads on joints. Most of the mouse models of osteoarthritis target the knee, including repetitive loading and joint injury such as ligament rupture, but a few studies have also characterised models for elbow, temporomandibular joint, and whole-body vibration spinal loading. These models are a great opportunity to dissect the influences of various types of mechanical input on joint health and disease.
Collapse
Affiliation(s)
- Blandine Poulet
- Institute of Ageing and Chronic Disease, Musculoskeletal Biology 1, University of Liverpool, Room 286, Second Floor, Apex Building, West Derby Street, Liverpool, L7 8TX, UK.
| |
Collapse
|
22
|
Pietrosimone B, Loeser RF, Blackburn JT, Padua DA, Harkey MS, Stanley LE, Luc-Harkey BA, Ulici V, Marshall SW, Jordan JM, Spang JT. Biochemical markers of cartilage metabolism are associated with walking biomechanics 6-months following anterior cruciate ligament reconstruction. J Orthop Res 2017; 35:2288-2297. [PMID: 28150869 PMCID: PMC5540809 DOI: 10.1002/jor.23534] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 01/23/2017] [Indexed: 02/06/2023]
Abstract
The purpose of our study was to determine the association between biomechanical outcomes of walking gait (peak vertical ground reaction force [vGRF], vGRF loading rate [vGRF-LR], and knee adduction moment [KAM]) 6 months following anterior cruciate ligament reconstruction (ACLR) and biochemical markers of serum type-II collagen turnover (collagen type-II cleavage product to collagen type-II C-propeptide [C2C:CPII]), plasma degenerative enzymes (matrix metalloproteinase-3 [MMP-3]), and a pro-inflammatory cytokine (interleukin-6 [IL-6]). Biochemical markers were evaluated within the first 2 weeks (6.5 ± 3.8 days) following ACL injury and again 6 months following ACLR in eighteen participants. All peak biomechanical outcomes were extracted from the first 50% of the stance phase of walking gait during a 6-month follow-up exam. Limb symmetry indices (LSI) were used to normalize the biomechanical outcomes in the ACLR limb to that of the contralateral limb (ACLR/contralateral). Bivariate correlations were used to assess associations between biomechanical and biochemical outcomes. Greater plasma MMP-3 concentrations after ACL injury and at the 6-month follow-up exam were associated with lesser KAM LSI. Lesser KAM was associated with greater plasma IL-6 at the 6-month follow-up exam. Similarly, lesser vGRF-LR LSI was associated with greater plasma MMP-3 concentrations at the 6-month follow-up exam. Lesser peak vGRF LSI was associated with higher C2C:CPII after ACL injury, yet this association was not significant after accounting for walking speed. Therefore, lesser biomechanical loading in the ACLR limb, compared to the contralateral limb, 6 months following ACLR may be related to deleterious joint tissue metabolism that could influence future cartilage breakdown. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2288-2297, 2017.
Collapse
Affiliation(s)
- Brian Pietrosimone
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States,Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Richard F. Loeser
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, United States
| | - J. Troy Blackburn
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States,Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Darin A. Padua
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States,Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Matthew S. Harkey
- Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Laura E. Stanley
- Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Brittney A. Luc-Harkey
- Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Veronica Ulici
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, United States
| | - Stephen W. Marshall
- Injury Prevention Research Center, University of North Carolina at Chapel Hill, North Carolina, United States
| | - Joanne M. Jordan
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, United States
| | - Jeffery T. Spang
- Department of Orthopaedics, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, United States
| |
Collapse
|
23
|
Mechanical loading: potential preventive and therapeutic strategy for osteoarthritis. J Am Acad Orthop Surg 2014; 22:465-6. [PMID: 24966253 PMCID: PMC5007862 DOI: 10.5435/jaaos-22-07-465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
24
|
Shim JW, Hamamura K, Chen A, Wan Q, Na S, Yokota H. Rac1 mediates load-driven attenuation of mRNA expression of nerve growth factor beta in cartilage and chondrocytes. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2013; 13:372-379. [PMID: 23989259 PMCID: PMC4030644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
OBJECTIVES To determine effect of gentle loads applied to the knee on mRNA expression of nerve growth factor, particularly, the active beta subunit (NGFβ) in cartilage and chondrocyte. METHODS Cyclic compressive loads in vivo and fluid flow in vitro were used to determine the mRNA levels. Alteration of Rac1 GTPase as well as effect of salubrinal, a specific inhibitor of eIF2α phosphatase was assessed using fluorescence resonance energy transfer (FRET)-based Rac1 biosensor. RESULTS Knee loading at 1 N reduced mRNA levels of NGFβ and its low affinity receptor, p75 in cartilage and subchondral bone. In cartilage, knee loading at 1 N reduced the phosphorylation level of p38 MAPK (p38-p) and activity of Rac1 GTPase. Consistent with in vivo results, fluid flow at 5 and 10 dyn/cm(2) reduced mRNA levels of NGFβ and p75 in C28/I2 human chondrocytes. SB203580, which decreases p38-p, reduced the mRNA levels of NGFβ and p75. Silencing Rac1 by siRNA decreased the levels of p38-p and NGFβ mRNA but not p75. Furthermore, administration of salubrinal reduced FRET-based activity of Rac1 as well as the mRNA levels of NGFβ and p75. CONCLUSIONS These results provide evidence that mechanical stimulation and salubrinal may attenuate pain perception-linked NGFβ signaling through Rac1-mediated p38 MAPK.
Collapse
Affiliation(s)
- Joon W. Shim
- Department of Biomedical Engineering, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202
| | - Kazunori Hamamura
- Department of Biomedical Engineering, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202
| | - Andy Chen
- Department of Biomedical Engineering, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202
| | - Qiaoqiao Wan
- Department of Biomedical Engineering, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202
| | - Sungsoo Na
- Department of Biomedical Engineering, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
25
|
Beckett J, Jin W, Schultz M, Chen A, Tolbert D, Moed BR, Zhang Z. Excessive running induces cartilage degeneration in knee joints and alters gait of rats. J Orthop Res 2012; 30:1604-10. [PMID: 22508407 DOI: 10.1002/jor.22124] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 03/23/2012] [Indexed: 02/04/2023]
Abstract
The goal of this study was to develop an aggressive running regimen for modeling osteoarthritis (OA) in rats. Twelve Wistar rats were randomly placed into either a running group or a non-running group to serve as the control. The running rats used a motorized treadmill to run either 30 km in 3 weeks or 55 km in 6 weeks. Each week, the prints of hind paws were obtained when rats were made to walk through a tunnel. The resulting prints were digitalized for analyses of stride length and step angle. The histology of the knees was examined at 3 and 6 weeks and the OA pathology in the knees was quantified by Mankin's score. Osteoarthritic pathology developed in the knees of the running rats, including decreased proteoglycan content, uneven type II collagen distribution in the cartilage matrix, increased MMP-13 expression, expanded calcified cartilage zone, and clefts and defects in articular cartilage. The pathology worsened from running for 3 to 6 weeks. Gait analysis revealed an inverse correlation between paw angle and the grades of OA pathology. In conclusion, excessive running induces joint degeneration and a unique gait pattern in rats.
Collapse
Affiliation(s)
- Jeffrey Beckett
- Center for Anatomical Science and Education, Saint Louis University, St. Louis, MO, USA
| | | | | | | | | | | | | |
Collapse
|