1
|
Dai M, Hong W, Ouyang Y. Identification and Validation of Hub Genes and Construction of miRNA-Gene and Transcription Factor-Gene Networks in Adipogenesis of Mesenchymal Stem Cells. Stem Cells Int 2024; 2024:5789593. [PMID: 39238829 PMCID: PMC11377116 DOI: 10.1155/2024/5789593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/13/2024] [Accepted: 07/26/2024] [Indexed: 09/07/2024] Open
Abstract
Background Adipogenic differentiation stands as a crucial pathway in the range of differentiation options for mesenchymal stem cells (MSCs), carrying significant importance in the fields of regenerative medicine and the treatment of conditions such as obesity and osteoporosis. However, the exact mechanisms that control the adipogenic differentiation of MSCs are not yet fully understood. Materials and Methods We procured datasets, namely GSE36923, GSE80614, GSE107789, and GSE113253, from the Gene Expression Omnibus database. These datasets enabled us to perform a systematic analysis, including the identification of differentially expressed genes (DEGs) pre- and postadipogenic differentiation in MSCs. Subsequently, we conducted an exhaustive analysis of DEGs common to all four datasets. To gain further insights, we subjected these overlapped DEGs to comprehensive gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Following the construction of protein-protein interaction (PPI) networks, we meticulously identified a cohort of hub genes pivotal to the adipogenic differentiation process and validated them using real-time quantitative polymerase chain reaction. Subsequently, we ventured into the construction of miRNA-gene and TF-gene interaction networks. Results Our rigorous analysis revealed a total of 18 upregulated DEGs and 12 downregulated DEGs that consistently appeared across all four datasets. Notably, the peroxisome proliferator-activated receptor signaling pathway, regulation of lipolysis in adipocytes, and the adipocytokine signaling pathway emerged as the top-ranking pathways significantly implicated in the regulation of these DEGs. Subsequent to the construction of the PPI network, we identified and validated 10 key node genes, namely IL6, FABP4, ADIPOQ, LPL, PLIN1, RBP4, ACACB, NT5E, KRT19, and G0S2. Our endeavor to construct miRNA-gene interaction networks led to the discovery of the top 10 pivotal miRNAs, including hsa-mir-27a-3p, hsa-let-7b-5p, hsa-mir-1-3p, hsa-mir-124-3p, hsa-mir-155-5p, hsa-mir-16-5p, hsa-mir-101-3p, hsa-mir-21-3p, hsa-mir-146a-5p, and hsa-mir-148b-3p. Furthermore, the construction of TF-gene interaction networks revealed the top 10 critical TFs: ZNF501, ZNF512, YY1, EZH2, ZFP37, ZNF2, SOX13, MXD3, ELF3, and TFDP1. Conclusions In summary, our comprehensive study has successfully unraveled the pivotal hub genes that govern the adipogenesis of MSCs. Moreover, the meticulously constructed miRNA-gene and TF-gene interaction networks are poised to significantly augment our comprehension of the intricacies underlying MSC adipogenic differentiation, thus providing a robust foundation for future advances in regenerative biology.
Collapse
Affiliation(s)
- Miaomiao Dai
- Department of Ophthalmology Shunde Hospital Southern Medical University (The First People's Hospital of Shunde, Foshan), No. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong Province, China
| | - Weisheng Hong
- Department of Joint Surgery Shunde Hospital Southern Medical University (The First People's Hospital of Shunde, Foshan), No. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong Province, China
| | - Yi Ouyang
- Department of Joint Surgery Shunde Hospital Southern Medical University (The First People's Hospital of Shunde, Foshan), No. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong Province, China
| |
Collapse
|
2
|
Zhang T, Li H, Sun S, Zhou W, Zhang T, Yu Y, Wang Q, Wang M. Microfibrillar-associated protein 5 suppresses adipogenesis by inhibiting essential coactivator of PPARγ. Sci Rep 2023; 13:5589. [PMID: 37020143 PMCID: PMC10076305 DOI: 10.1038/s41598-023-32868-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/04/2023] [Indexed: 04/07/2023] Open
Abstract
Femoral head necrosis is responsible for severe pain and its incidence is increasing. Abnormal adipogenic differentiation and fat cell hypertrophy of bone marrow mesenchymal stem cells increase intramedullary cavity pressure, leading to osteonecrosis. By analyzing gene expression before and after adipogenic differentiation, we found that Microfibril-Associated Protein 5 (MFAP5) is significantly down-regulated in adipogenesis whilst the mechanism of MFAP5 in regulating the differentiation of bone marrow mesenchymal stem cells is unknown. The purpose of this study was to clarify the role of MAFP5 in adipogenesis and therefore provide a theoretical basis for future therapeutic options of osteonecrosis. By knockdown or overexpression of MFAP5 in C3H10 and 3T3-L1 cells, we found that MFAP5 was significantly down-regulated as a key regulator of adipogenic differentiation, and identified the underlying downstream molecular mechanism. MFAP5 directly bound to and inhibited the expression of Staphylococcal Nuclease And Tudor Domain Containing 1, an essential coactivator of PPARγ, exerting an important regulatory role in adipogenesis.
Collapse
Affiliation(s)
- Tianlong Zhang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Haoran Li
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Shiwei Sun
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Wuling Zhou
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Tieqi Zhang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Yueming Yu
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Qiang Wang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China.
- Center of Community-Based Health Research, Fudan University, Shanghai, China.
| | - Minghai Wang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China.
- Center of Community-Based Health Research, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Luo Y, Liu Y, Wang B, Tu X. CHIR99021-Treated Osteocytes with Wnt Activation in 3D-Printed Module Form an Osteogenic Microenvironment for Enhanced Osteogenesis and Vasculogenesis. Int J Mol Sci 2023; 24:ijms24066008. [PMID: 36983081 PMCID: PMC10052982 DOI: 10.3390/ijms24066008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Finding a bone implant that has high bioactivity that can safely drive stem cell differentiation and simulate a real in vivo microenvironment is a challenge for bone tissue engineering. Osteocytes significantly regulate bone cell fate, and Wnt-activated osteocytes can reversely regulate bone formation by regulating bone anabolism, which may improve the biological activity of bone implants. To achieve a safe application, we used the Wnt agonist CHIR99021 (C91) to treat MLO-Y4 for 24 h, in a co-culture with ST2 for 3 days after withdrawal. We found that the expression of Runx2 and Osx increased, promoted osteogenic differentiation, and inhibited adipogenic differentiation in the ST2 cells, and these effects were eliminated by the triptonide. Therefore, we hypothesized that C91-treated osteocytes form an osteogenic microenvironment (COOME). Subsequently, we constructed a bio-instructive 3D printing system to verify the function of COOME in 3D modules that mimic the in vivo environment. Within PCI3D, COOME increased the survival and proliferation rates to as high as 92% after 7 days and promoted ST2 cell differentiation and mineralization. Simultaneously, we found that the COOME-conditioned medium also had the same effects. Therefore, COOME promotes ST2 cell osteogenic differentiation both directly and indirectly. It also promotes HUVEC migration and tube formation, which can be explained by the high expression of Vegf. Altogether, these results indicate that COOME, combined with our independently developed 3D printing system, can overcome the poor cell survival and bioactivity of orthopedic implants and provide a new method for clinical bone defect repair.
Collapse
Affiliation(s)
- Yisheng Luo
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yangxi Liu
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Bo Wang
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xiaolin Tu
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
4
|
Ma J, Yang C, Zhong H, Wang C, Zhang K, Li X, Wu J, Gao Y. Role of HSP90α in osteoclast formation and osteoporosis development. Exp Ther Med 2022; 23:273. [PMID: 35251339 PMCID: PMC8892609 DOI: 10.3892/etm.2022.11199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/20/2021] [Indexed: 11/22/2022] Open
Abstract
Osteoporosis (OP) is a systemic metabolic bone disease that occurs most frequently in the elderly. The main pathogenesis of OP is excessive proliferation and differentiation of osteoclasts, in which the peroxisome proliferator-activated receptor γ (PPARγ) pathway has a pivotal role. Recently, heat shock protein (HSP)90α has been identified as an important molecular chaperone with PPARγ, which regulates the effect of the PPARγ pathway. The aim of the present study was to investigate the role of HSP90α involved in the regulation of osteoclast formation and the process of osteoporosis. Firstly, the expression of HSP90α in osteoclast differentiation was detected by western blotting in vitro, then the effect of HSP90α inhibition on the formation and differentiation of osteoclasts was examined. Furthermore, the nuclear import of PPARγ was also assessed to confirm the synergistic effect of HSP90α. Finally, the inhibitory effect of HSP90α in vivo was explored, using a mouse model of osteoporosis. As a result, in the process of osteoclast differentiation and proliferation, the expression of HSP90α was upregulated. Inhibition of HSP90α could block the formation and differentiation of osteoclasts, and remit osteoporosis in mice. Regarding the underlying mechanism, inhibition of HSP90α could block the nuclear import of PPARγ to inhibit osteoclast differentiation and proliferation. In conclusion, these data indicated that the inhibition of HSP90α could block osteoclast formation and remit osteoporosis by reducing the nuclear import of PPARγ.
Collapse
Affiliation(s)
- Jianli Ma
- Department of Pharmacy, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100039, P.R. China
| | - Chen Yang
- Department of Orthopedics, Changzheng Hospital, Shanghai 200003, P.R. China
| | - Huajian Zhong
- Department of Orthopedics, Changzheng Hospital, Shanghai 200003, P.R. China
| | - Cheng Wang
- Department of Orthopedics, National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100039, P.R. China
| | - Ke Zhang
- Department of Orthopedics, Changzheng Hospital, Shanghai 200003, P.R. China
| | - Xiaoming Li
- Department of Orthopedics, Shanghai Hospital, Shanghai 200433, P.R. China
| | - Jinhui Wu
- Department of Orthopedics, Changzheng Hospital, Shanghai 200003, P.R. China
| | - Yang Gao
- Department of Orthopedics, National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100039, P.R. China
| |
Collapse
|
5
|
Wang N, Li Y, Li Z, Liu C, Xue P. Sal B targets TAZ to facilitate osteogenesis and reduce adipogenesis through MEK-ERK pathway. J Cell Mol Med 2019; 23:3683-3695. [PMID: 30907511 PMCID: PMC6484321 DOI: 10.1111/jcmm.14272] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/14/2022] Open
Abstract
Salvianolic acid B (Sal B), a major bioactive component of Chinese herb, was identified as a mediator for bone metabolism recently. The aim of this study is to investigate the underlying mechanisms by which Sal B regulates osteogenesis and adipogenesis. We used MC3T3-E1 and 3T3-L1 as the study model to explore the changes of cell differentiation induced by Sal B. The results indicated that Sal B at different concentrations had no obvious toxicity effects on cell proliferation during differentiation. Furthermore, Sal B facilitated osteogenesis but inhibited adipogenesis by increasing the expression of transcriptional co-activator with PDZ-binding motif (TAZ). Accordingly, TAZ knock-down offset the effects of Sal B on cell differentiation into osteoblasts or adipocytes. Notably, the Sal B induced up-expression of TAZ was blocked by U0126 (the MEK-ERK inhibitor), rather than LY294002 (the PI3K-Akt inhibitor). Moreover, Sal B increased the p-ERK/ERK ratio to regulate the TAZ expression as well as the cell differentiation. In summary, this study suggests for the first time that Sal B targets TAZ to facilitate osteogenesis and reduce adipogenesis by activating MEK-ERK signalling pathway, which provides evidence for Sal B to be used as a potential therapeutic agent for the management of bone diseases.
Collapse
Affiliation(s)
- Na Wang
- Department of Endocrinology, Hebei Medical University, Third Affiliated Hospital, Shijiazhuang, PR China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, PR China
| | - Yukun Li
- Department of Endocrinology, Hebei Medical University, Third Affiliated Hospital, Shijiazhuang, PR China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, PR China
| | - Ziyi Li
- Department of Endocrinology, Hebei Medical University, Third Affiliated Hospital, Shijiazhuang, PR China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, PR China
| | - Chang Liu
- Department of Endocrinology, Hebei Medical University, Third Affiliated Hospital, Shijiazhuang, PR China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, PR China
| | - Peng Xue
- Department of Endocrinology, Hebei Medical University, Third Affiliated Hospital, Shijiazhuang, PR China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, PR China
| |
Collapse
|
6
|
Wang C, Tanjaya J, Shen J, Lee S, Bisht B, Pan HC, Pang S, Zhang Y, Berthiaume EA, Chen E, Da Lio AL, Zhang X, Ting K, Guo S, Soo C. Peroxisome Proliferator-Activated Receptor-γ Knockdown Impairs Bone Morphogenetic Protein-2-Induced Critical-Size Bone Defect Repair. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:648-664. [PMID: 30593824 PMCID: PMC6412314 DOI: 10.1016/j.ajpath.2018.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/13/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
The Food and Drug Administration-approved clinical dose (1.5 mg/mL) of bone morphogenetic protein-2 (BMP2) has been reported to induce significant adverse effects, including cyst-like adipose-infiltrated abnormal bone formation. These undesirable complications occur because of increased adipogenesis, at the expense of osteogenesis, through BMP2-mediated increases in the master regulatory gene for adipogenesis, peroxisome proliferator-activated receptor-γ (PPARγ). Inhibiting PPARγ during osteogenesis has been suggested to drive the differentiation of bone marrow stromal/stem cells toward an osteogenic, rather than an adipogenic, lineage. We demonstrate that knocking down PPARγ while concurrently administering BMP2 can reduce adipogenesis, but we found that it also impairs BMP2-induced osteogenesis and leads to bone nonunion in a mouse femoral segmental defect model. In addition, in vitro studies using the mouse bone marrow stromal cell line M2-10B4 and mouse primary bone marrow stromal cells confirmed that PPARγ knockdown inhibits BMP2-induced adipogenesis; attenuates BMP2-induced cell proliferation, migration, invasion, and osteogenesis; and escalates BMP2-induced cell apoptosis. More important, BMP receptor 2 and 1B expression was also significantly inhibited by the combined BMP2 and PPARγ knockdown treatment. These findings indicate that PPARγ is critical for BMP2-mediated osteogenesis during bone repair. Thus, uncoupling BMP2-mediated osteogenesis and adipogenesis using PPARγ inhibition to combat BMP2's adverse effects may not be feasible.
Collapse
Affiliation(s)
- Chenchao Wang
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, People's Republic of China; Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California; Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, and Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Justine Tanjaya
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Jia Shen
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Soonchul Lee
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California; Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Bharti Bisht
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Hsin Chuan Pan
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Shen Pang
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Yulong Zhang
- Departments of Materials Science and Engineering, and Division of Advanced Prosthodontics, University of California, Los Angeles, Los Angeles, California
| | - Emily A Berthiaume
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Eric Chen
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Andrew L Da Lio
- Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, and Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Xinli Zhang
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Kang Ting
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Shu Guo
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, People's Republic of China.
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, and Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
7
|
Wang N, Li Y, Li Z, Ma J, Wu X, Pan R, Wang Y, Gao L, Bao X, Xue P. IRS-1 targets TAZ to inhibit adipogenesis of rat bone marrow mesenchymal stem cells through PI3K-Akt and MEK-ERK pathways. Eur J Pharmacol 2019; 849:11-21. [PMID: 30716312 DOI: 10.1016/j.ejphar.2019.01.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 01/07/2023]
Abstract
Gene modification of mesenchymal stem cells (MSCs) offers a promising approach for clinical stem cell therapy. Transcriptional co-activator with PDZ-binding motif (TAZ) plays a vital role in MSCs' differentiation. We aim to explore the interaction of insulin receptor substrate-1 (IRS-1) with TAZ to regulate MSCs' adipogenesis in this study. Initially, IRS-1 and TAZ followed similar decreasing expression pattern at the early stage of adipogenesis. And, overexpression of IRS-1 decreased the CCAAT/enhancer binding protein β (C/EBPβ) and peroxi-some proliferator-activated receptor gamma (PPARγ) expression with TAZ upregulation. Accordingly, knockdown of IRS-1 induced the upexpression of C/EBPβ and PPARγ with TAZ downregulation. Indeed, IRS-1 targeted TAZ to downregulate the C/EBPβ and PPARγ expression, while knockdown of TAZ attenuated the IRS-1 inhibited adipogenesis. Furthermore, both LY294002 (the PI3K-Akt inhibitor) and U0126 (the MEK-ERK inhibitor) blocked the regulation of IRS-1 on TAZ during adipogenesis. Additionally, IRS-1 and TAZ influenced the cell proliferation in the above process. Taken together, this study suggests for the first time that IRS-1 is a key regulator of the MSCs' adipogenesis and may serve as a potential therapeutic target for differential alterations in bone marrow.
Collapse
Affiliation(s)
- Na Wang
- Department of Endocrinology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China; Key Orthopaedic Biomechanics Laboratory of Hebei Province, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China
| | - Yukun Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China; Key Orthopaedic Biomechanics Laboratory of Hebei Province, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China
| | - Ziyi Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China; Key Orthopaedic Biomechanics Laboratory of Hebei Province, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China
| | - Jianxia Ma
- Department of Endocrinology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China; Key Orthopaedic Biomechanics Laboratory of Hebei Province, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China
| | - Xuelun Wu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China; Key Orthopaedic Biomechanics Laboratory of Hebei Province, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China
| | - Runzhou Pan
- Department of Endocrinology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China; Key Orthopaedic Biomechanics Laboratory of Hebei Province, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China
| | - Yan Wang
- Department of Endocrinology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China; Key Orthopaedic Biomechanics Laboratory of Hebei Province, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China
| | - Liu Gao
- Department of Endocrinology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China; Key Orthopaedic Biomechanics Laboratory of Hebei Province, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China
| | - Xiaoxue Bao
- Department of Endocrinology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China; Key Orthopaedic Biomechanics Laboratory of Hebei Province, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China
| | - Peng Xue
- Department of Endocrinology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China; Key Orthopaedic Biomechanics Laboratory of Hebei Province, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China.
| |
Collapse
|
8
|
Yang YJ, Zhu Z, Wang DT, Zhang XL, Liu YY, Lai WX, Mo YL, Li J, Liang YL, Hu ZQ, Yu YJ, Cui L. Tanshinol alleviates impaired bone formation by inhibiting adipogenesis via KLF15/PPARγ2 signaling in GIO rats. Acta Pharmacol Sin 2018; 39:633-641. [PMID: 29323335 PMCID: PMC5888681 DOI: 10.1038/aps.2017.134] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/18/2017] [Indexed: 12/22/2022] Open
Abstract
Glucocorticoid (GC)-induced osteoporosis (GIO) is characterized by impaired bone formation, which can be alleviated by tanshinol, an aqueous polyphenol isolated from Salvia miltiorrhiza Bunge. In this study we investigated the molecular mechanisms underlying GC-induced modulation of osteogenesis as well as the possibility of using tanshinol to interfere with GIO. Female SD rats aged 4 months were orally administered distilled water (Con), prednisone (GC, 5 mg·kg-1·d-1), GC plus tanshinol (Tan, 16 mg·kg-1·d-1) or GC plus resveratrol (Res, 5 mg·kg-1·d-1) for 14 weeks. After the rats were sacrificed, samples of bone tissues were collected. The changes in bone formation were assessed using Micro-CT, histomorphometry, and biomechanical assays. Expression of Kruppel-like factor 15 (KLF15), peroxisome proliferator-activated receptor γ 2 (PPARγ 2) and other signaling proteins in skeletal tissue was measured with Western blotting and quantitative RT-PCR. GC treatment markedly increased the expression of KLF15, PPARγ2, C/EBPα and aP2, which were related to adipogenesis, upregulated FoxO3a pathway proteins (FoxO3a and Gadd45a), and suppressed the canonical Wnt signaling (β-catenin and Axin2), which was required for osteogenesis. Thus, GC significantly decreased bone mass and bone quality. Co-treatment with Tan or Res effectively counteracted GC-impaired bone formation, suppressed GC-induced adipogenesis, and restored abnormal expression of the signaling molecules in GIO rats. We conclude that tanshinol counteracts GC-decreased bone formation by inhibiting marrow adiposity via the KLF15/PPARγ2/FoxO3a/Wnt pathway.
Collapse
Affiliation(s)
- Ya-jun Yang
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Zhu Zhu
- Sino-American Cancer Research Institute, Guangdong Medical University, Dongguan 523808, China
| | - Dong-tao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China
| | - Xin-le Zhang
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yu-yu Liu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Wen-xiu Lai
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yu-lin Mo
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Jin Li
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yan-long Liang
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Zhuo-qing Hu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yong-jie Yu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
| | - Liao Cui
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, China
- Guangdong Key Laboratory for R&D of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
9
|
Han N, Li Z, Cai Z, Yan Z, Hua Y, Xu C. P-glycoprotein overexpression in bone marrow-derived multipotent stromal cells decreases the risk of steroid-induced osteonecrosis in the femoral head. J Cell Mol Med 2016; 20:2173-2182. [PMID: 27396977 PMCID: PMC5082398 DOI: 10.1111/jcmm.12917] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/31/2016] [Indexed: 12/21/2022] Open
Abstract
P‐glycoprotein (P‐gp) plays a role in steroid‐induced osteonecrosis of the femoral head (ONFH), but the underlying mechanism remains unknown. We hypothesized that P‐gp overexpression can prevent ONFH by regulating bone marrow–derived multipotent stromal cell (BMSC) adipogenesis and osteogenesis. BMSCs from Sprague–Dawley rats were transfected with green fluorescent protein (GFP) or the multidrug resistance gene 1 (MDR1) encoding GFP and P‐gp. Dexamethasone was used to induce BMSC differentiation. Adipogenesis was determined by measuring peroxisome proliferator‐activated receptor (PPAR‐γ) expression and the triglyceride level. Osteogenesis was determined by measuring runt‐related transcription factor 2 (Runx2) expression and alkaline phosphatase activity. For in vivo experiments, rats were injected with saline, BMSCs expressing GFP (GFP‐BMSCs) or BMSCs expressing GFP‐P‐gp (MDR1‐GFP‐BMSCs). After dexamethasone induction, adipogenesis was determined by measuring PPAR‐γ expression and fatty marrow, whereas osteogenesis was detected by measuring Runx2 expression, trabecular parameters and the mineral apposition rate, followed by evaluation of the incidence of ONFH. Overexpression of P‐gp in BMSCs resulted in markedly decreased expression of adipogenic markers and increased expression of osteogenic markers. Compared with rats injected with saline, rats injected with GFP‐BMSCs showed reduced ONFH, and the injected GFP‐positive BMSCs attached to trabecular surfaces and exhibited an osteoblast‐like morphology. Compared with the rats injected with BMSCs expressing GFP alone, rats injected with BMSCs overexpressing GFP and P‐gp showed lower adipocytic variables, higher osteogenic variables and lower incidence of ONFH. Overexpression of P‐gp inhibited BMSC adipogenesis and promoted osteogenesis, which reduced the incidence of steroid‐induced ONFH.
Collapse
Affiliation(s)
- Ning Han
- Shanghai East Hospital of Tongji University, Shanghai, China.,Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Zengchun Li
- Shanghai East Hospital of Tongji University, Shanghai, China
| | - Zhengdong Cai
- Shanghai Tenth People's Hospital of Tongji University, Shanghai, China. .,Shanghai First People's Hospital of Jiaotong University, Shanghai, China.
| | - Zuoqin Yan
- Zhongshan Hospital of Fudan University, Shanghai, China.
| | - Yingqi Hua
- Shanghai First People's Hospital of Jiaotong University, Shanghai, China
| | - Chong Xu
- Shanghai East Hospital of Tongji University, Shanghai, China
| |
Collapse
|
10
|
Shao M, Liu C, Song Y, Ye W, He W, Yuan G, Gu S, Lin C, Ma L, Zhang Y, Tian W, Hu T, Chen Y. FGF8 signaling sustains progenitor status and multipotency of cranial neural crest-derived mesenchymal cells in vivo and in vitro. J Mol Cell Biol 2015; 7:441-54. [PMID: 26243590 DOI: 10.1093/jmcb/mjv052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/27/2015] [Indexed: 02/05/2023] Open
Abstract
The cranial neural crest (CNC) cells play a vital role in craniofacial development and regeneration. They are multi-potent progenitors, being able to differentiate into various types of tissues. Both pre-migratory and post-migratory CNC cells are plastic, taking on diverse fates by responding to different inductive signals. However, what sustains the multipotency of CNC cells and derivatives remains largely unknown. In this study, we present evidence that FGF8 signaling is able to sustain progenitor status and multipotency of CNC-derived mesenchymal cells both in vivo and in vitro. We show that augmented FGF8 signaling in pre-migratory CNC cells prevents cell differentiation and organogenesis in the craniofacial region by maintaining their progenitor status. CNC-derived mesenchymal cells with Fgf8 overexpression or control cells in the presence of exogenous FGF8 exhibit prolonged survival, proliferation, and multi-potent differentiation capability in cell cultures. Remarkably, exogenous FGF8 also sustains the capability of CNC-derived mesenchymal cells to participate in organogenesis such as odontogenesis. Furthermore, FGF8-mediated signaling strongly promotes adipogenesis but inhibits osteogenesis of CNC-derived mesenchymal cells in vitro. Our results reveal a specific role for FGF8 in the maintenance of progenitor status and in fate determination of CNC cells, implicating a potential application in expansion and fate manipulation of CNC-derived cells in stem cell-based craniofacial regeneration.
Collapse
Affiliation(s)
- Meiying Shao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Chao Liu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Yingnan Song
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA Southern Center for Biomedical Research, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350108, China
| | - Wenduo Ye
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Wei He
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Guohua Yuan
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA Hubei-MOST KLOS and KLOBM School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Shuping Gu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Congxin Lin
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Liang Ma
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yanding Zhang
- Southern Center for Biomedical Research, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350108, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA Southern Center for Biomedical Research, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350108, China
| |
Collapse
|
11
|
Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1 alpha autocrine/paracrine signaling loop. Biomaterials 2015; 49:103-12. [DOI: 10.1016/j.biomaterials.2015.01.017] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 12/31/2022]
|