1
|
Steel S, Pearcy Q, Li K, Scholze M, Zwirner J. The relationship between the pH value of a hydration solution and the biomechanical properties of Crosado-embalmed human iliotibial bands. J Mech Behav Biomed Mater 2022; 132:105266. [DOI: 10.1016/j.jmbbm.2022.105266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022]
|
2
|
Nguyen TD, Hu AC, Protsenko DE, Wong BJF. Effects of electromechanical reshaping on mechanical behavior of exvivo bovine tendon. Clin Biomech (Bristol, Avon) 2020; 73:92-100. [PMID: 31958703 DOI: 10.1016/j.clinbiomech.2020.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/26/2019] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Electromechanical reshaping is a novel, minimally invasive means to induce mechanical changes in connective tissues, and has the potential to be utilized in lieu of current orthopedic therapies that involve tendons and ligaments. Electromechanical reshaping delivers an electrical current to tissues while under mechanical deformation, causing in situ redox changes that produce reliably controlled and spatially limited mechanical and structural changes. In this study, we examine the feasibility of altering Young's modulus and inducing a shape deformation using an ex vivo bovine Achilles tendon model. METHODS Tendon was mechanically deformed in two different modes: (1) elongation to assess for tensile modulus and (2) compression to assess for compressive modulus. Electromechanical reshaping was applied to tendon specimens via flat plate platinum electrodes (6 V, 3 min) while simultaneously under mechanical strain for 15 min. FINDINGS In elongation mode, post-electromechanical reshaping samples demonstrated a significant decrease in Young's modulus compared to pretreatment samples (66.02 and 45.12 MPa, respectively, p < 0.0049). In compression mode, posttreatment samples illustrated a significant shape change, with an increase in diameter (10.62 to 11.36 mm, p < 0.05) and decrease in thickness (4.13 to 3.62 mm, p < 0.05). INTERPRETATION Results demonstrated a tissue softening effect without lengthening deformation during elongation, and a shortening effect without compromising compressive stiffness during compression. Electromechanical reshaping's reliable, low-cost, and efficacious methodology in inducing mechanical and structural connective tissue modifications illustrates a potential for future alternative orthopedic applications. Future studies will optimize and refine electromechanical reshaping to address clinically relevant geometries and methods such as needle techniques.
Collapse
Affiliation(s)
- Tony D Nguyen
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, Orange, CA, USA; Beckman Laser Institute, University of California, Irvine, CA, USA.
| | - Allison C Hu
- Beckman Laser Institute, University of California, Irvine, CA, USA; Department of Otolaryngology, Head and Neck Surgery, University of California, Irvine, Orange, CA, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA.
| | - Dmitry E Protsenko
- Beckman Laser Institute, University of California, Irvine, CA, USA; Department of Otolaryngology, Head and Neck Surgery, University of California, Irvine, Orange, CA, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA.
| | - Brian J F Wong
- Beckman Laser Institute, University of California, Irvine, CA, USA; Department of Otolaryngology, Head and Neck Surgery, University of California, Irvine, Orange, CA, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
5
|
Seehra GP, Silver FH. Viscoelastic properties of acid- and alkaline-treated human dermis: a correlation between total surface charge and elastic modulus. Skin Res Technol 2007; 12:190-8. [PMID: 16827694 DOI: 10.1111/j.0909-752x.2006.00150.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND One of the major mechanical functions of collagenous tissues is the storage, transmission and dissipation of elastic energy during mechanical deformation. In skin, mechanical energy is stored during loading and then is transmitted and dissipated, which protects skin from mechanical failure. Thus energy storage (elastic properties) and dissipation (viscous properties) are important characteristics of extracellular matrices. METHODS A uniaxial incremental stress relaxation test method has been used to characterize the time-dependent (viscous) and time-independent (elastic) properties of human dermis. Viscoelasticity was investigated in processed human dermis that was equilibrated at pHs of 3.0, 7.4 and 11.0 in an effort to study the link between electrostatic interactions within the collagen matrix and macroscopic tissue properties. RESULTS Our results show that the solution pH and the charge on collagen significantly affected the high-strain elastic behavior of dermis; the elastic behavior of skin has previously been shown to be directly correlated with axial stretching of the collagen triple helix in crosslinked collagen fibrils. A positive linear correlation existed between the high-strain elastic modulus and both pH (R(2)=0.96) and the total number of charged residues on collagen (R(2)=0.93). These results provide in vitro/ex vivo evidence that charged groups on the surface of collagen molecules in processed human skin influence the high-strain elastic properties of dermis and are likely to be involved in elastic energy storage. CONCLUSION It is proposed that the pH and charged residue dependency of the elastic modulus suggests that charged pair interactions and repulsions within and between collagen molecules are involved in elastic energy storage during stretching at high strains. It is hypothesized that elastic energy storage is associated with the stretching of pairs of charged amino acid residues that are found primarily in the flexible regions of collagen molecules.
Collapse
Affiliation(s)
- Gurinder P Seehra
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | | |
Collapse
|
6
|
Silver FH, Seehra GP, Freeman JW, DeVore D. Viscoelastic properties of young and old human dermis: A proposed molecular mechanism for elastic energy storage in collagen and elastin. J Appl Polym Sci 2002. [DOI: 10.1002/app.11119] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Silver FH, Horvath I, Foran DJ. Mechanical implications of the domain structure of fiber-forming collagens: comparison of the molecular and fibrillar flexibilities of the alpha1-chains found in types I-III collagen. J Theor Biol 2002; 216:243-54. [PMID: 12079374 DOI: 10.1006/jtbi.2002.2542] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fibrillar collagens store, transmit and dissipate elastic energy during tensile deformation. Results of previous studies suggest that the collagen molecule is made up of alternating rigid and flexible domains, and extension of the flexible domains is associated with elastic energy storage. In this study, we model the flexibility of the alpha1-chains found in types I-III collagen molecules and microfibrils in order to understand the molecular basis of elastic energy storage in collagen fibers by analysing the areas under conformational plots for dipeptide sequences. Results of stereochemical modeling suggest that the collagen triple helix is made up of rigid and flexible domains that alternate with periods that are multiples of three amino acid residues. The relative flexibility of dipeptide sequences found in the flexible regions is about a factor of five higher than that found for the flexibility of the rigid regions, and the flexibility of types II and III collagen molecules appears to be higher than that found for the type I collagen molecule. The different collagen alpha1-chains were compared by correlating the flexibilities. The results suggest that the flexibilities of the alpha1-chains of types I and III collagen are more closely related than the flexibilities of the alpha1-chains in types I and II and II and III collagen. The flexible domains found in the alpha1-chains of types I-III collagen were found to be conserved in the microfibril and had periods of about 15 amino acid residues and multiples thereof. The flexibility profiles of types I and II collagen microfibrils were found to be more highly correlated than those for types I and III and II and III. These results suggest that the domain structure of the alpha1-chains found in types I-III collagen is an efficient means for storage of elastic energy during stretching while preserving the triple helical structure of the overall molecule. It is proposed that all collagens that form fibers are designed to act as storage elements for elastic energy. The function of fibers rich in type I collagen is to store and then transmit this energy while fibers rich in types II and III collagen may store and then reflect elastic energy for dissipation through viscous fibrillar slippage. Impaired elastic energy storage by extracellular matrices may lead to cellular damage and changes in signaling by mechanochemical transduction at the extracellular matrix-cell interface.
Collapse
Affiliation(s)
- Frederick H Silver
- Department of Pathology and Laboratory Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854. USA.
| | | | | |
Collapse
|
9
|
Kambic HE, Reyes E, Manning T, Waters KC, Reger SI. Influence of AC and DC electrical stimulation on wound healing in pigs: a biomechanical analysis. J INVEST SURG 1993; 6:535-43. [PMID: 8123615 DOI: 10.3109/08941939309141644] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To evaluate the effects of electrical stimulation on the mechanical properties of healing skin, 20 Hanford mini-pigs weighing 10-15 kg with trochanteric pressure ulcers were subjected to electrical stimulation. Examination of the biomechanical properties of the skin and changes in wound area and volume was done on previously wounded and healing pigskin subject to AC or DC electrical stimulation. The behavior of normal pigskin was compared to (1) denervated controls, (2) denervated AC-stimulated skin, and (3) denervated DC-stimulated skin. A denervated limb trochanteric pressure sore model developed in house permitted the use of a 6.5-mm percutaneous cancellous screw for wound formation and a 3-cm-diameter spring compression indentor to create reproducible and uniformly controlled grade 3 or higher tissue ulcers in the monoplegic hind limbs. Denervation was accomplished by right unilateral extradural rhizotomies from L2 to S1 nerve roots. Electrodes were placed 1 cm distal and proximal to the wound periphery, and wounds were stimulated 2 h/day, 5 days/week for 30 days. Dumbbell-shaped skin specimens with a length to width ratio of 3:1 were uniaxially loaded in tension until failure at an extension rate of 150 mm/min. The stiffness values for skin samples oriented parallel to the current flow were reduced by nearly half the values obtained for normal controls. Statistical differences (P < .05) were found for stress, Young modulus, and stiffness when compared to normal skin. Samples oriented in the perpendicular direction were comparable to normal skin (P = NS).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H E Kambic
- Department of Biomedical Engineering, Cleveland Clinic Foundation, OH 44195
| | | | | | | | | |
Collapse
|