1
|
Futoma-Kołoch B, Małaszczuk M, Korzekwa K, Steczkiewicz M, Gamian A, Bugla-Płoskońska G. The Prolonged Treatment of Salmonella enterica Strains with Human Serum Effects in Phenotype Related to Virulence. Int J Mol Sci 2023; 24:883. [PMID: 36614327 PMCID: PMC9821590 DOI: 10.3390/ijms24010883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
Salmonella enterica as common pathogens of humans and animals are good model organisms to conduct research on bacterial biology. Because these bacteria can multiply in both the external environments and in the living hosts, they prove their wide adaptability. It has been previously demonstrated that prolonged exposition of Salmonella serotype O48 cells to normal human serum led to an increase in resistance to sera in connection with the synthesis of very long O-antigen. In this work, we have studied the phenotype connected to virulence of Salmonella enterica strains that were subjected to consecutive passages in 50% human serum from platelet-poor plasma (SPPP). We found that eight passages in SPPP may not be enough for the bacteria to become serum-resistant (S. Typhimurium ATCC 14028, S. Senftenberg). Moreover, C1q and C3c complement components bound to Salmonellae (S. Typhimurium ATCC 14028, S. Hammonia) membrane proteins, which composition has been changed after passaging in sera. Interestingly, passages in SPPP generated genetic changes within gene fljB, which translated to cells’ motility (S. Typhimurium ATCC 14028, S. Erlangen). One strain, S. Hammonia exposed to a serum developed a multi-drug resistance (MDR) phenotype and two S. Isaszeg and S. Erlangen tolerance to disinfectants containing quaternary ammonium salts (QAS). Furthermore, colonial morphotypes of the serum adaptants were similar to those produced by starter cultures. These observations suggest that overcoming stressful conditions is manifested on many levels. Despite great phenotypic diversity occurring after prolonged exposition to SPPP, morphotypes of colonies remained unchanged in basic media. This work is an example in which stable morphotypes distinguished by altered virulence can be confusing during laboratory work with life-threatening strains.
Collapse
Affiliation(s)
- Bożena Futoma-Kołoch
- Department of Microbiology, Faculty of Biological Sciences, University of Wrocław, 51-148 Wrocław, Poland
| | - Michał Małaszczuk
- Department of Microbiology, Faculty of Biological Sciences, University of Wrocław, 51-148 Wrocław, Poland
| | - Kamila Korzekwa
- Department of Microbiology, Faculty of Biological Sciences, University of Wrocław, 51-148 Wrocław, Poland
| | - Małgorzata Steczkiewicz
- Department of Microbiology, Faculty of Biological Sciences, University of Wrocław, 51-148 Wrocław, Poland
| | - Andrzej Gamian
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | - Gabriela Bugla-Płoskońska
- Department of Microbiology, Faculty of Biological Sciences, University of Wrocław, 51-148 Wrocław, Poland
| |
Collapse
|
2
|
Kolev M, Barbour T, Baver S, Francois C, Deschatelets P. With complements: C3 inhibition in the clinic. Immunol Rev 2023; 313:358-375. [PMID: 36161656 DOI: 10.1111/imr.13138] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
C3 is a key complement protein, located at the nexus of all complement activation pathways. Extracellular, tissue, cell-derived, and intracellular C3 plays critical roles in the immune response that is dysregulated in many diseases, making it an attractive therapeutic target. However, challenges such as very high concentration in blood, increased acute expression, and the elevated risk of infections have historically posed significant challenges in the development of C3-targeted therapeutics. This is further complicated because C3 activation fragments and their receptors trigger a complex network of downstream effects; therefore, a clear understanding of these is needed to provide context for a better understanding of the mechanism of action (MoA) of C3 inhibitors, such as pegcetacoplan. Because of C3's differential upstream position to C5 in the complement cascade, there are mechanistic differences between pegcetacoplan and eculizumab that determine their efficacy in patients with paroxysmal nocturnal hemoglobinuria. In this review, we compare the MoA of pegcetacoplan and eculizumab in paroxysmal nocturnal hemoglobinuria and discuss the complement-mediated disease that might be amenable to C3 inhibition. We further discuss the current state and outlook for C3-targeted therapeutics and provide our perspective on which diseases might be the next success stories in the C3 therapeutics journey.
Collapse
Affiliation(s)
- Martin Kolev
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | - Tara Barbour
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | - Scott Baver
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | | | | |
Collapse
|
3
|
Torp MK, Ranheim T, Schjalm C, Hjorth M, Heiestad C, Dalen KT, Nilsson PH, Mollnes TE, Pischke SE, Lien E, Vaage J, Yndestad A, Stensløkken KO. Intracellular Complement Component 3 Attenuated Ischemia-Reperfusion Injury in the Isolated Buffer-Perfused Mouse Heart and Is Associated With Improved Metabolic Homeostasis. Front Immunol 2022; 13:870811. [PMID: 35432387 PMCID: PMC9011808 DOI: 10.3389/fimmu.2022.870811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/08/2022] [Indexed: 12/25/2022] Open
Abstract
The innate immune system is rapidly activated during myocardial infarction and blockade of extracellular complement system reduces infarct size. Intracellular complement, however, appears to be closely linked to metabolic pathways and its role in ischemia-reperfusion injury is unknown and may be different from complement activation in the circulation. The purpose of the present study was to investigate the role of intracellular complement in isolated, retrogradely buffer-perfused hearts and cardiac cells from adult male wild type mice (WT) and from adult male mice with knockout of complement component 3 (C3KO). Main findings: (i) Intracellular C3 protein was expressed in isolated cardiomyocytes and in whole hearts, (ii) after ischemia-reperfusion injury, C3KO hearts had larger infarct size (32 ± 9% in C3KO vs. 22 ± 7% in WT; p=0.008) and impaired post-ischemic relaxation compared to WT hearts, (iii) C3KO cardiomyocytes had lower basal oxidative respiration compared to WT cardiomyocytes, (iv) blocking mTOR decreased Akt phosphorylation in WT, but not in C3KO cardiomyocytes, (v) after ischemia, WT hearts had higher levels of ATP, but lower levels of both reduced and oxidized nicotinamide adenine dinucleotide (NADH and NAD+, respectively) compared to C3KO hearts. Conclusion: intracellular C3 protected the heart against ischemia-reperfusion injury, possibly due to its role in metabolic pathways important for energy production and cell survival.
Collapse
Affiliation(s)
- M-K. Torp
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- *Correspondence: M-K. Torp,
| | - T. Ranheim
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Division of Surgery, Inflammatory Diseases and Transplantation, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - C. Schjalm
- Department of Immunology, Institute of Clinical Medicine University of Oslo, Oslo, Norway
| | - M. Hjorth
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - C.M. Heiestad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - K. T. Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - P. H. Nilsson
- Department of Immunology, Institute of Clinical Medicine University of Oslo, Oslo, Norway
- Linnaeus Centre for Biomaterials Chemistry, and the Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
| | - T. E. Mollnes
- Department of Immunology, Institute of Clinical Medicine University of Oslo, Oslo, Norway
- Stiftelsen Kristian Gerhard Jebsen (K.G. Jebsen) Inflammation Research Center (IRC), University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, and Faculty of Health Sciences, Stiftelsen Kristian Gerhard Jebsen (K.G. Jebsen) Thrombosis Research and Expertise Center (TREC), University of Tromsø, Tromsø, Norway
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - S. E. Pischke
- Department of Immunology, Institute of Clinical Medicine University of Oslo, Oslo, Norway
- Department of Research & Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - E. Lien
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Division of Infectious Diseases and Immunology, Program in Innate Immunity, Department of Medicine, UMass Medical School, Worchester, MA, United States
| | - J. Vaage
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Research & Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - A. Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - K-O. Stensløkken
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
de Jorge EG, Yebenes H, Serna M, Tortajada A, Llorca O, de Córdoba SR. How novel structures inform understanding of complement function. Semin Immunopathol 2017; 40:3-14. [PMID: 28808775 DOI: 10.1007/s00281-017-0643-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/03/2017] [Indexed: 11/30/2022]
Abstract
During the last decade, the complement field has experienced outstanding advancements in the mechanistic understanding of how complement activators are recognized, what C3 activation means, how protein complexes like the C3 convertases and the membrane attack complex are assembled, and how positive and negative complement regulators perform their function. All of this has been made possible mostly because of the contributions of structural biology to the study of the complement components. The wealth of novel structural data has frequently provided support to previously held knowledge, but often has added alternative and unexpected insights into complement function. Here, we will review some of these findings focusing in the alternative and terminal complement pathways.
Collapse
Affiliation(s)
- Elena Goicoechea de Jorge
- Department of Microbiology I (Immunology), Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Hugo Yebenes
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Marina Serna
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Agustín Tortajada
- Department of Microbiology I (Immunology), Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Oscar Llorca
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain.,Structural Biology Programme, CNIO, C/ Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Santiago Rodríguez de Córdoba
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain. .,Ciber de Enfermedades Raras, Madrid, Spain.
| |
Collapse
|
5
|
Papanastasiou M, Koutsogiannaki S, Sarigiannis Y, Geisbrecht BV, Ricklin D, Lambris JD. Structural Implications for the Formation and Function of the Complement Effector Protein iC3b. THE JOURNAL OF IMMUNOLOGY 2017; 198:3326-3335. [PMID: 28258193 DOI: 10.4049/jimmunol.1601864] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/10/2017] [Indexed: 01/17/2023]
Abstract
Complement-mediated opsonization, phagocytosis, and immune stimulation are critical processes in host defense and homeostasis, with the complement activation fragment iC3b playing a key effector role. To date, however, there is no high-resolution structure of iC3b, and some aspects of its structure-activity profile remain controversial. Here, we employed hydrogen-deuterium exchange mass spectrometry to describe the structure and dynamics of iC3b at a peptide resolution level in direct comparison with its parent protein C3b. In our hydrogen-deuterium exchange mass spectrometry study, 264 peptides were analyzed for their deuterium content, providing almost complete sequence coverage for this 173-kDa protein. Several peptides in iC3b showed significantly higher deuterium uptake when compared with C3b, revealing more dynamic, solvent-exposed regions. Most of them resided in the CUB domain, which contains the heptadecapeptide C3f that is liberated during the conversion of C3b to iC3b. Our data suggest a highly disordered CUB, which has acquired a state similar to that of intrinsically disordered proteins, resulting in a predominant form of iC3b that features high structural flexibility. The structure was further validated using an anti-iC3b mAb that was shown to target an epitope in the CUB region. The information obtained in this work allows us to elucidate determinants of iC3b specificity and activity and provide functional insights into the protein's recognition pattern with respect to regulators and receptors of the complement system.
Collapse
Affiliation(s)
- Malvina Papanastasiou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Sophia Koutsogiannaki
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Yiannis Sarigiannis
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Daniel Ricklin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| |
Collapse
|
6
|
Biryukov S, Angov E, Landmesser ME, Spring MD, Ockenhouse CF, Stoute JA. Complement and Antibody-mediated Enhancement of Red Blood Cell Invasion and Growth of Malaria Parasites. EBioMedicine 2016; 9:207-216. [PMID: 27333049 PMCID: PMC4972486 DOI: 10.1016/j.ebiom.2016.05.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/03/2016] [Accepted: 05/12/2016] [Indexed: 11/02/2022] Open
Abstract
Plasmodium falciparum malaria is a deadly pathogen. The invasion of red blood cells (RBCs) by merozoites is a target for vaccine development. Although anti-merozoite antibodies can block invasion in vitro, there is no efficacy in vivo. To explain this discrepancy we hypothesized that complement activation could enhance RBC invasion by binding to the complement receptor 1 (CR1). Here we show that a monoclonal antibody directed against the merozoite and human polyclonal IgG from merozoite vaccine recipients enhanced RBC invasion in a complement-dependent manner and that soluble CR1 inhibited this enhancement. Sialic acid-independent strains, that presumably are able to bind to CR1 via a native ligand, showed less complement-dependent enhancement of RBC invasion than sialic acid-dependent strains that do not utilize native CR1 ligands. Confocal fluorescent microscopy revealed that complement-dependent invasion resulted in aggregation of CR1 at the RBC surface in contact with the merozoite. Finally, total anti-P. berghei IgG enhanced parasite growth and C3 deficiency decreased parasite growth in mice. These results demonstrate, contrary to current views, that complement activation in conjunction with antibodies can paradoxically aid parasites invade RBCs and should be considered in future design and testing of merozoite vaccines.
Collapse
Affiliation(s)
- Sergei Biryukov
- Department of Microbiology and Immunology, Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, PA 17033, United States
| | - Evelina Angov
- Walter Reed Army Institute of Research, Division of Malaria Vaccine Development, Silver Spring, MD 20910, United States
| | - Mary E Landmesser
- Department of Microbiology and Immunology, Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, PA 17033, United States; Department of Medicine, Division of Infectious Diseases and Epidemiology, Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, PA 17033, United States
| | - Michele D Spring
- Walter Reed Army Institute of Research, Division of Malaria Vaccine Development, Silver Spring, MD 20910, United States
| | | | - José A Stoute
- Department of Microbiology and Immunology, Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, PA 17033, United States; Department of Medicine, Division of Infectious Diseases and Epidemiology, Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, PA 17033, United States.
| |
Collapse
|
7
|
Complement Receptor 2 is increased in cerebrospinal fluid of multiple sclerosis patients and regulates C3 function. Clin Immunol 2016; 166-167:89-95. [PMID: 27085202 DOI: 10.1016/j.clim.2016.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/08/2016] [Indexed: 12/13/2022]
Abstract
Besides its vital role in immunity, the complement system also contributes to the shaping of the synaptic circuitry of the brain. We recently described that soluble Complement Receptor 2 (sCR2) is part of the nerve injury response in rodents. We here study CR2 in context of multiple sclerosis (MS) and explore the molecular effects of CR2 on C3 activation. Significant increases in sCR2 levels were evident in cerebrospinal fluid (CSF) from both patients with relapsing-remitting MS (n=33; 6.2ng/mL) and secondary-progressive MS (n=9; 7.0ng/mL) as compared to controls (n=18; 4.1ng/mL). Furthermore, CSF sCR2 levels correlated significantly both with CSF C3 and C1q as well as to a disease severity measure. In vitro, sCR2 inhibited the cleavage and down regulation of C3b to iC3b, suggesting that it exerts a modulatory role in complement activation downstream of C3. These results propose a novel function for CR2/sCR2 in human neuroinflammatory conditions.
Collapse
|
8
|
Harder MJ, Anliker M, Höchsmann B, Simmet T, Huber-Lang M, Schrezenmeier H, Ricklin D, Lambris JD, Barlow PN, Schmidt CQ. Comparative Analysis of Novel Complement-Targeted Inhibitors, MiniFH, and the Natural Regulators Factor H and Factor H-like Protein 1 Reveal Functional Determinants of Complement Regulation. THE JOURNAL OF IMMUNOLOGY 2015; 196:866-76. [PMID: 26643478 DOI: 10.4049/jimmunol.1501919] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/04/2015] [Indexed: 01/08/2023]
Abstract
The serum proteins factor H (FH), consisting of 20 complement control protein modules (CCPs), and its splice product FH-like protein 1 (FHL-1; consisting of CCPs 1-7) are major regulators of the alternative pathway (AP) of complement activation. The engineered version of FH, miniFH, contains only the N- and C-terminal portions of FH linked by an optimized peptide and shows ∼ 10-fold higher ex vivo potency. We explored the hypothesis that regulatory potency is enhanced by unmasking of a ligand-binding site in the C-terminal CCPs 19-20 that is cryptic in full-length native FH. Therefore, we produced an FH variant lacking the central domains 10-15 (FHΔ10-15). To explore how avidity affects regulatory strength, we generated a duplicated version of miniFH, termed midiFH. We compared activities of FHΔ10-15 and midiFH to miniFH, FH, and FHL-1. Relative to FH, FHΔ10-15 exhibited an altered binding profile toward C3 activation products and a 5-fold-enhanced complement regulation on a paroxysmal nocturnal hemoglobinuria patient's erythrocytes. Contrary to dogma, FHL-1 and FH exhibited equal regulatory activity, suggesting that the role of FHL-1 in AP regulation has been underestimated. Unexpectedly, a substantially increased avidity for complement opsonins, as seen in midiFH, did not potentiate the inhibitory potential on host cells. In conclusion, comparisons of engineered and native FH-based regulators have identified features that determine high AP regulatory activity on host cells. Unrestricted availability of FH CCPs 19-20 and an optimal spatial orientation between the N- and C-terminal FH regions are key.
Collapse
Affiliation(s)
- Markus J Harder
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany
| | - Markus Anliker
- Institute of Transfusion Medicine, University of Ulm, 89081 Ulm, Germany; Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Service Baden-Württemberg - Hessen and University Hospital Ulm, 89081 Ulm, Germany
| | - Britta Höchsmann
- Institute of Transfusion Medicine, University of Ulm, 89081 Ulm, Germany; Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Service Baden-Württemberg - Hessen and University Hospital Ulm, 89081 Ulm, Germany
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany
| | - Markus Huber-Lang
- Department of Traumatology, Center of Surgery, University of Ulm, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, University of Ulm, 89081 Ulm, Germany; Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Service Baden-Württemberg - Hessen and University Hospital Ulm, 89081 Ulm, Germany
| | - Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19102
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19102
| | - Paul N Barlow
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, United Kingdom; and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JJ, United Kingdom
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany;
| |
Collapse
|
9
|
Abstract
The complement component C3 is the major effector molecule of the complement system. C3 circulates in the blood and interstitial fluids as pro-enzyme and is activated by enzymatic cleavage into a C3a portion, a classic anaphylatoxin that functions as chemoattractant and immune cell activator, and the C3b portion, the body's most potent opsonin. C3 cleavage is in most cases mediated by an enzyme complex called the C3 convertase. However, it is now becoming increasingly clear that the cleavage of C3 by a range of 'single' proteases into bioactive C3a and C3b fragments is of high physiological significance. Here, we describe a protocol for the enzymatic cleavage of human C3 by the serine protease cathepsin L and the detection of the cleavage products C3a and C3b by western blotting as an example for this kind of enzymatic reactions.
Collapse
Affiliation(s)
- Claudia Kemper
- MRC Centre for Transplantation, King's College, London, UK
| | | |
Collapse
|
10
|
Schmidt CQ, Bai H, Lin Z, Risitano AM, Barlow PN, Ricklin D, Lambris JD. Rational engineering of a minimized immune inhibitor with unique triple-targeting properties. THE JOURNAL OF IMMUNOLOGY 2013; 190:5712-21. [PMID: 23616575 DOI: 10.4049/jimmunol.1203548] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inadequate control of the complement system is the underlying or aggravating factor in many human diseases. Whereas treatment options that specifically target the alternative pathway (AP) of complement activation are considered highly desirable, no such option is available in the clinic. In this study, we present a successful example of protein engineering, guided by structural insight on the complement regulator factor H (FH), yielding a novel complement-targeted therapeutic (mini-FH) with clinical potential. Despite a 70% reduction in size, mini-FH retained and in some respects exceeded the regulatory activity and cell surface-recognition properties of its parent protein FH, including the recently described recognition of sites of oxidative stress. Importantly, the chosen design extended the functional spectrum of the inhibitor, as mini-FH showed increased binding to the surface-bound opsonins iC3b and C3dg when compared with FH. Thus, mini-FH is equipped with a unique and clinically valuable triple-targeting profile toward diseased host cells, through its binding to sites of ongoing complement activation, markers of oxidative damage, and host surface-specific polyanions. When assessed in a clinically relevant AP-mediated disease model of paroxysmal nocturnal hemoglobinuria, mini-FH largely outperformed FH and indicated advantages over clinically evaluated AP inhibitors. Thus, the rational engineering of a streamlined FH construct not only provided insight into the function of a key complement regulator, but also yielded a novel inhibitor that combines a triple-targeting approach with high AP-specific inhibitory activity (IC50 ~ 40 nM), which may pave the way toward new options for the treatment of complement-mediated diseases.
Collapse
Affiliation(s)
- Christoph Q Schmidt
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|