1
|
Kshatriya GK, Panmei T, Kameih G. Alu insertion-deletion polymorphisms in the Tibeto-Burman speaking tribal groups of Manipur, North-East India. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Singh G, Bhanwer A. Distribution of angiotensin converting enzyme gene (insertion/deletion) polymorphism in Indian populations. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2018.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
3
|
Krishnaveni A, Prabhakaran K. Alu Insertion/Deletion Polymorphism in Four Tribes of South India. INT J HUM GENET 2017. [DOI: 10.1080/09723757.2015.11886256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- A. Krishnaveni
- PG & Research Department of Zoology, Periyar E. V. R. College (Autonomous), Tiruchirappalli 620 023, Tamil Nadu, India
| | - K. Prabhakaran
- PG & Research Department of Zoology, Periyar E. V. R. College (Autonomous), Tiruchirappalli 620 023, Tamil Nadu, India
| |
Collapse
|
4
|
Singh G, Talwar I, Sandhu HS, Matharoo K, Bhanwer AJS. Genetic dissection of five ethnic groups from Punjab, North-West India-A study based on Autosomal Markers. Leg Med (Tokyo) 2017; 26:25-32. [PMID: 28549544 DOI: 10.1016/j.legalmed.2017.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/07/2017] [Accepted: 02/27/2017] [Indexed: 10/20/2022]
Abstract
The present study assessed the applicability of Alu insertion elements and Single Nucleotide Polymorphisms (SNPs) in forensic identification and estimated the extent of genetic variation in five major ethnic groups of Punjab, North-West India. A total of 1012 unrelated samples belonging to Banias, Brahmins, Jat Sikhs, Khatris and Scheduled Castes were genotyped for four Alu elements (ACE, APO, PLAT, D1) and six Single Nucleotide Polymorphisms [ESR (PvuII), LPL (PvuII), HTR2A (MspI), DRD2 Taq1A, Taq1B, Taq1D]. Allele frequencies observed heterozygosity and forensic efficacy parameters were determined. The data on the genetic affinity of the studied populations among themselves and with other populations of India was also analysed using a Neighbor-Joining tree and multidimensional scaling plot respectively. All the 10 loci were polymorphic and their average observed heterozygosity ranged from 0.3872 (Banias) to 0.4311 (Scheduled Castes). Allele frequency variation at the 9 out of 10 loci led to statistically significant pairwise differences among the five study population groups. The result from AMOVA, Structure analysis, and Phylogenetic tree suggests that these populations are homogenous. In the multidimensional scaling plot, the present study populations formed a compact cluster clearly separated from other populations, suggesting a unique genetic identity of the Punjab populations as a whole. All these observations suggest that either a recent common origin of these populations or extensive gene flow across the populations that dissolve the original genetic differences. The data generated in this study will be useful for forensic genetics, molecular anthropological and demographic studies.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Anthropology, Panjab University, Chandigarh 160014, India; Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| | - Indu Talwar
- Department of Anthropology, Panjab University, Chandigarh 160014, India.
| | - Harkirat Singh Sandhu
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| | - Kawaljit Matharoo
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| | - A J S Bhanwer
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| |
Collapse
|
5
|
Singh G, Talwar I, Sharma R, Matharoo K, Bhanwer AJS. Genetic differentiation and population structure of five ethnic groups of Punjab (North-West India). Mol Genet Genomics 2016; 291:2055-2063. [DOI: 10.1007/s00438-016-1239-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 08/03/2016] [Indexed: 12/15/2022]
|
6
|
Laybourn S, Akam EC, Cox N, Singh P, Mastana SS. Genetic analysis of novel Alu insertion polymorphisms in selected indian populations. Am J Hum Biol 2016; 28:941-944. [PMID: 27292586 DOI: 10.1002/ajhb.22881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 05/03/2016] [Accepted: 05/10/2016] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Indian subpopulations (Chenchu, Koya, and Lobana Sikh) were analyzed at the genetic level for 12 Alu polymorphisms. These markers were then utilized to establish levels of genetic identity between the Indian populations and more widely between the Indian populations and a European population. METHODS Previously collected blood samples were extracted using the phenol-chloroform method. The samples were utilized as templates for PCR using Alu specific primers and then analyzed by agarose gel electrophoresis for the presence and absence of the approximately 300 bp insertions. Allele frequencies were calculated by the gene counting method and were tested for Hardy-Weinberg equilibrium, heterozygosities, inbreeding coefficient, and GST to assess the level of genetic differentiation. RESULTS All of the Alu loci were polymorphic in the three Indian populations studied and their average observed heterozygosity ranged from 0.294 (Lobana Sikh) to 0.357 (Koya). Allele and genotype frequency variation at the 2b, 9a, and ACE loci led to statistically significant pairwise differences among the three study populations. Overall population heterogeneity was observed for 7 out of 12 Alu polymorphisms. CONCLUSION The overall results show that these Indian samples, though displaying significant genetic variation and differences among themselves, form an Indian cluster, which as expected, is distinct from the European sample (Russian). As Alus are easily analyzed and quantified by standard and cost-effective methodologies, this finding further reinforces their utility as effective population genetic markers. Am. J. Hum. Biol., 2016. © 2016 Wiley Periodicals, Inc. Am. J. Hum. Biol. 28:941-944, 2016. © 2016Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Susie Laybourn
- Human Genomics Lab, School of Sport, Exercise and Heath Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, United Kingdom
| | - Elizabeth Claire Akam
- Human Genomics Lab, School of Sport, Exercise and Heath Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, United Kingdom
| | - Nick Cox
- Human Genomics Lab, School of Sport, Exercise and Heath Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, United Kingdom
| | - Puneetpal Singh
- Department of Human Genetics, Punjabi University, Patiala, Punjab, India
| | - Sarabjit S Mastana
- Human Genomics Lab, School of Sport, Exercise and Heath Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, United Kingdom
| |
Collapse
|
7
|
Abstract
CONTEXT India is considered a treasure for geneticists and evolutionary biologists due to its vast human diversity, consisting of more than 4500 anthropologically well-defined populations (castes, tribes and religious groups). Each population differs in terms of endogamy, language, culture, physical features, geographic and climatic position and genetic architecture. These factors contributed to India-specific genetic variations which may be responsible for various common diseases in India and its migratory populations. As a result, interpretations of the origins and affinities of Indian populations as well as health and disease conditions require complex and sophisticated genetic analysis. Evidence of ancient human dispersals and settlements is preserved in the genome of Indian inhabitants and this has been extensively analysed in conventional and genomic analyses. OBJECTIVE AND METHODS Using genomic analyses of STRs and Alu on a set of populations, this study estimates the level and extent of genetic variation and its implications. RESULTS The results show that Indian populations have a higher level of unique genetic diversity which is structured by many social processes and geographical attributes of the country. CONCLUSION This overview highlights the need to study the anthropological structure and evolutionary history of Indian populations while designing genomic and epigenomic investigations.
Collapse
Affiliation(s)
- Sarabjit S Mastana
- Human Genomics Lab, Centre for Global Health and Human Development, School of Sport, Exercise and Health Sciences, Loughborough University , Loughborough , UK
| |
Collapse
|
8
|
Khurana P, Aggarwal A, Mitra S, Italia YM, Saraswathy KN, Chandrasekar A, Kshatriya GK. Y chromosome haplogroup distribution in Indo-European speaking tribes of Gujarat, western India. PLoS One 2014; 9:e90414. [PMID: 24614885 PMCID: PMC3948632 DOI: 10.1371/journal.pone.0090414] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/01/2014] [Indexed: 11/20/2022] Open
Abstract
The present study was carried out in the Indo-European speaking tribal population groups of Southern Gujarat, India to investigate and reconstruct their paternal population structure and population histories. The role of language, ethnicity and geography in determining the observed pattern of Y haplogroup clustering in the study populations was also examined. A set of 48 bi-allelic markers on the non-recombining region of Y chromosome (NRY) were analysed in 284 males; representing nine Indo-European speaking tribal populations. The genetic structure of the populations revealed that none of these groups was overtly admixed or completely isolated. However, elevated haplogroup diversity and FST value point towards greater diversity and differentiation which suggests the possibility of early demographic expansion of the study groups. The phylogenetic analysis revealed 13 paternal lineages, of which six haplogroups: C5, H1a*, H2, J2, R1a1* and R2 accounted for a major portion of the Y chromosome diversity. The higher frequency of the six haplogroups and the pattern of clustering in the populations indicated overlapping of haplogroups with West and Central Asian populations. Other analyses undertaken on the population affiliations revealed that the Indo-European speaking populations along with the Dravidian speaking groups of southern India have an influence on the tribal groups of Gujarat. The vital role of geography in determining the distribution of Y lineages was also noticed. This implies that although language plays a vital role in determining the distribution of Y lineages, the present day linguistic affiliation of any population in India for reconstructing the demographic history of the country should be considered with caution.
Collapse
Affiliation(s)
- Priyanka Khurana
- Department of Anthropology, School of Applied Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh, India
| | - Aastha Aggarwal
- South Asia Network for Chronic Disease, Public Health Foundation of India, Delhi, India
| | - Siuli Mitra
- Department of Anthropology, University of Delhi, Delhi, India
| | - Yazdi M. Italia
- Valsad Raktdan Kendra, R.N.C. Free Eye Hospital Complex, Valsad, Gujarat, India
| | | | | | | |
Collapse
|
9
|
Distribution of beta-globin haplotypes among the tribes of southern Gujarat, India. Gene 2013; 521:287-92. [DOI: 10.1016/j.gene.2013.02.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/13/2012] [Accepted: 02/27/2013] [Indexed: 11/17/2022]
|
10
|
Genomic diversity and affinities in population groups of North West India: an analysis of Alu insertion and a single nucleotide polymorphism. Gene 2012; 511:293-9. [PMID: 22995348 DOI: 10.1016/j.gene.2012.08.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 11/21/2022]
Abstract
The North West region of India is extremely important to understand the peopling of India, as it acted as a corridor to the foreign invaders from Eurasia and Central Asia. A series of these invasions along with multiple migrations led to intermixture of variable populations, strongly contributing to genetic variations. The present investigation was designed to explore the genetic diversities and affinities among the five major ethnic groups from North West India; Brahmin, Jat Sikh, Bania, Rajput and Gujjar. A total of 327 individuals of the abovementioned ethnic groups were analyzed for 4 Alu insertion marker loci (ACE, PV92, APO and D1) and a Single Nucleotide Polymorphism (SNP) rs2234693 in the intronic region of the ESR1 gene. Statistical analysis was performed to interpret the genetic structure and diversity of the population groups. Genotypes for ACE, APO, ESR1 and PV92 loci were found to be in Hardy-Weinberg equilibrium in all the ethnic groups, while significant departures were observed at the D1 locus in every investigated population after Bonferroni's correction. The average heterozygosity for all the loci in these ethnic groups was fairly substantial ranging from 0.3927 ± 0.1877 to 0.4333 ± 0.1416. Inbreeding coefficient indicated an overall 10% decrease in heterozygosity in these North West Indian populations. The gene differentiation among the populations was observed to be of the order of 0.013. Genetic distance estimates revealed that Gujjars were close to Banias and Jat Sikhs were close to Rajputs. Overall the study favored the recent division of the populations of North West India into largely endogamous groups. It was observed that the populations of North West India represent a more or less homogenous genetic entity, owing to their common ancestral history as well as geographical proximity.
Collapse
|