1
|
Helena's Many Daughters: More Mitogenome Diversity behind the Most Common West Eurasian mtDNA Control Region Haplotype in an Extended Italian Population Sample. Int J Mol Sci 2022; 23:ijms23126725. [PMID: 35743173 PMCID: PMC9223851 DOI: 10.3390/ijms23126725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/27/2023] Open
Abstract
The high number of matching haplotypes of the most common mitochondrial (mt)DNA lineages are considered to be the greatest limitation for forensic applications. This study investigates the potential to solve this constraint by massively parallel sequencing a large number of mitogenomes that share the most common West Eurasian mtDNA control region (CR) haplotype motif (263G 315.1C 16519C). We augmented a pilot study on 29 to a total of 216 Italian mitogenomes that represents the largest set of the most common CR haplotype compiled from a single country. The extended population sample confirmed and extended the huge coding region diversity behind the most common CR motif. Complete mitogenome sequencing allowed for the detection of 163 distinct haplotypes, raising the power of discrimination from 0 (CR) to 99.6% (mitogenome). The mtDNAs were clustered into 61 named clades of haplogroup H and did not reveal phylogeographic trends within Italy. Rapid individualization approaches for investigative purposes are limited to the most frequent H clades of the dataset, viz. H1, H3, and H7.
Collapse
|
2
|
A bird's-eye view of Italian genomic variation through whole-genome sequencing. Eur J Hum Genet 2019; 28:435-444. [PMID: 31784700 PMCID: PMC7080768 DOI: 10.1038/s41431-019-0551-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 09/30/2019] [Accepted: 10/29/2019] [Indexed: 11/30/2022] Open
Abstract
The genomic variation of the Italian peninsula populations is currently under characterised: the only Italian whole-genome reference is represented by the Tuscans from the 1000 Genome Project. To address this issue, we sequenced a total of 947 Italian samples from three different geographical areas. First, we defined a new Italian Genome Reference Panel (IGRP1.0) for imputation, which improved imputation accuracy, especially for rare variants, and we tested it by GWAS analysis on red blood traits. Furthermore, we extended the catalogue of genetic variation investigating the level of population structure, the pattern of natural selection, the distribution of deleterious variants and occurrence of human knockouts (HKOs). Overall the results demonstrate a high level of genomic differentiation between cohorts, different signatures of natural selection and a distinctive distribution of deleterious variants and HKOs, confirming the necessity of distinct genome references for the Italian population.
Collapse
|
3
|
Li YX, Gao YL, He XL, Cao SX. Exploration of mtDNA control region sequences in Chinese Tibetan Mastiffs. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:800-804. [PMID: 28756720 DOI: 10.1080/24701394.2017.1357714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The control region of mitochondrial DNA (mtDNA) was obtained from 40 purebred Chinese Tibetan Mastiffs (TMs). Sequence structure and genetic diversity were analyzed, and a phylogenetic tree was constructed. The TM mtDNA control region was composed of ETAS (extended termination associated sequences), CD (a central domain) and CSBs (conserved sequenced blocks) and sequence length showed some diversity, which was mainly caused by the number of 10 nucleotide repeat units [5'-GTA CAC GT (G/A) C-3'] between CSB I and CSB II, which ranged from 27 to 35 among individuals. Seventy-five polymorphic sites were identified, which defined 37 haplotypes; the haplotype diversity was 0.990, and the nucleotide diversity was 1.201. Based on the control region sequences, Chinese TMs were divided into three categories, which were consistent with the origin and geographical classification of TMs. Phylogenetic analysis of 538-bp HVR-I sequences revealed that TMs were most closely related to Labrador Retrievers.
Collapse
Affiliation(s)
- Yin-Xia Li
- a Institute of Animal Science , Jiangsu Academy of Agricultural Sciences , Nanjing , Jiangsu , China.,b Key Laboratory of Animal Breeding and Reproduction , Jiangsu Academy of Agricultural Sciences , Nanjing , Jiangsu , China
| | - Yi-Long Gao
- c Policedog Technology Key Laboratory of the Ministry of Public Security , Nanjing Policedog Research Institute of the Ministry of Public Security , Nanjing , Jiangsu , China
| | - Xing-Liang He
- c Policedog Technology Key Laboratory of the Ministry of Public Security , Nanjing Policedog Research Institute of the Ministry of Public Security , Nanjing , Jiangsu , China
| | - Shao-Xian Cao
- a Institute of Animal Science , Jiangsu Academy of Agricultural Sciences , Nanjing , Jiangsu , China.,b Key Laboratory of Animal Breeding and Reproduction , Jiangsu Academy of Agricultural Sciences , Nanjing , Jiangsu , China
| |
Collapse
|
4
|
Varano S, Scorrano G, Martínez-Labarga C, Finocchio A, Rapone C, Berti A, Rickards O. Exploring the mitochondrial DNA variability of the Amazonian Yanomami. Am J Hum Biol 2016; 28:846-856. [DOI: 10.1002/ajhb.22877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 03/29/2016] [Accepted: 05/13/2016] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sara Varano
- Department of Biology, Center of Molecular Anthropology for Ancient DNA Studies; University of Rome ‘Tor Vergata’; Via della Ricerca Scientifica n. 1 Rome Italy
| | - Gabriele Scorrano
- Department of Biology, Center of Molecular Anthropology for Ancient DNA Studies; University of Rome ‘Tor Vergata’; Via della Ricerca Scientifica n. 1 Rome Italy
| | - Cristina Martínez-Labarga
- Department of Biology, Center of Molecular Anthropology for Ancient DNA Studies; University of Rome ‘Tor Vergata’; Via della Ricerca Scientifica n. 1 Rome Italy
| | - Andrea Finocchio
- Department of Biology, Center of Molecular Anthropology for Ancient DNA Studies; University of Rome ‘Tor Vergata’; Via della Ricerca Scientifica n. 1 Rome Italy
| | - Cesare Rapone
- Carabinieri, Scientific Investigation Department; Viale di Tor di Quinto n. 151 Rome Italy
| | - Andrea Berti
- Carabinieri, Scientific Investigation Department; Viale di Tor di Quinto n. 151 Rome Italy
| | - Olga Rickards
- Department of Biology, Center of Molecular Anthropology for Ancient DNA Studies; University of Rome ‘Tor Vergata’; Via della Ricerca Scientifica n. 1 Rome Italy
| |
Collapse
|
5
|
Anagnostou P, Capocasa M, Dominici V, Montinaro F, Coia V, Destro-Bisol G. Evaluating mtDNA patterns of genetic isolation using a re-sampling procedure: A case study on Italian populations. Ann Hum Biol 2016; 44:140-148. [PMID: 27109644 DOI: 10.1080/03014460.2016.1181784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND A number of studies which have investigated isolation patterns in human populations rely on the analysis of intra- and inter-population genetic statistics of mtDNA polymorphisms. However, this approach makes it difficult to differentiate between the effects of long-term genetic isolation and the random fluctuations of statistics due to reduced sample size. AIM To overcome the confounding effect of sample size when detecting signatures of genetic isolation. SUBJECTS AND METHODS A re-sampling based procedure was employed to evaluate reduction in intra-population diversity, departure from surrounding genetic background and demographic stationarity in 34 Italian populations subject to isolation factors. RESULTS Signatures of genetic isolation were detected for all three statistics in seven populations: Pusteria valley, Sappada, Sauris, Timau settled in the eastern Italian Alps and Cappadocia, Filettino and Vallepietra settled in the Appenines. However, this study was unable to find signals for any of the statistics analysed in 19 populations. Finally, eight populations showing signals of isolation were found for one or two statistics. CONCLUSION The analysis revealed that the use of population genetic statistics combined with re-sampling procedure can help detect signatures of genetic isolation in human populations, even using a single, although highly informative, locus like mtDNA.
Collapse
Affiliation(s)
- Paolo Anagnostou
- a Dipartimento di Biologia Ambientale , Sapienza University of Rome , Rome , Italy.,b Istituto Italiano di Antropologia , Rome , Italy
| | - Marco Capocasa
- b Istituto Italiano di Antropologia , Rome , Italy.,c Dipartimento di Biologia e Biotecnologie 'Charles Darwin' , Sapienza University of Rome , Rome , Italy
| | - Valentina Dominici
- a Dipartimento di Biologia Ambientale , Sapienza University of Rome , Rome , Italy
| | | | - Valentina Coia
- e Istituto per le Mummie e l'Iceman, Accademia Europea di Bolzano (EURAC-Research) , Bolzano , Italy
| | - Giovanni Destro-Bisol
- a Dipartimento di Biologia Ambientale , Sapienza University of Rome , Rome , Italy.,b Istituto Italiano di Antropologia , Rome , Italy
| |
Collapse
|
6
|
Messina F, Scano G, Contini I, Martínez-Labarga C, De Stefano GF, Rickards O. Linking between genetic structure and geographical distance: Study of the maternal gene pool in the Ethiopian population. Ann Hum Biol 2016; 44:53-69. [PMID: 26883569 DOI: 10.3109/03014460.2016.1155646] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background The correlation between genetics and geographical distance has already been examined through the study of the dispersion of human populations, especially in terms of uniparental genetic markers. Aim The present work characterises, at the level of the mitochondrial DNA (mtDNA), two new samples of Amhara and Oromo populations from Ethiopia to evaluate the possible pattern of distribution for mtDNA variation and to test the hypothesis of the Isolation-by-Distance (IBD) model among African, European and Middle-Eastern populations. Subjects and methods This study analysed 173 individuals belonging to two ethnic groups of Ethiopia, Amhara and Oromo, by assaying HVS-I and HVS-II of mtDNA D-loop and informative coding region SNPs of mtDNA. Results The analysis suggests a relationship between genetic and geographic distances, affirming that the mtDNA pool of Africa, Europe and the Middle East might be coherent with the IBD model. Moreover, the mtDNA gene pools of the Sub-Saharan African and Mediterranean populations were very different. Conclusion In this study the pattern of mtDNA distribution, beginning with the Ethiopian plateau, was tested in the IBD model. It could be affirmed that, on a continent scale, the mtDNA pool of Africa, Europe and the Middle East might fall under the IBD model.
Collapse
Affiliation(s)
- Francesco Messina
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| | - Giuseppina Scano
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| | - Irene Contini
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| | - Cristina Martínez-Labarga
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| | - Gian Franco De Stefano
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| | - Olga Rickards
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| |
Collapse
|
7
|
Messina F, Finocchio A, Rolfo MF, De Angelis F, Rapone C, Coletta M, Martínez-Labarga C, Biondi G, Berti A, Rickards O. Traces of forgotten historical events in mountain communities in Central Italy: A genetic insight. Am J Hum Biol 2015; 27:508-19. [PMID: 25728801 DOI: 10.1002/ajhb.22677] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 11/20/2014] [Accepted: 12/20/2014] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES Analysis of human genetic variation in mountain communities can shed light on the peopling of mountainous regions, perhaps revealing whether the remote geographic location spared them from outside invasion and preserved their gene pool from admixture. In this study, we created a model to assess genetic traces of historical events by reconstructing the paternal and maternal genetic history of seven small mountain villages in inland valleys of Central Italy. METHODS The communities were selected for their geographic isolation, attested biodemographic stability, and documented history prior to the Roman conquest. We studied the genetic structure by analyzing two hypervariable segments (HVS-I and HVS-II) of the mtDNA D-loop and several informative single nucleotide polymorphisms (SNPs) of the mtDNA coding region in 346 individuals, in addition to 17 short tandem repeats (STRs) and Y-chromosome SNPs in 237 male individuals. RESULTS For both uniparental markers, most of the haplogroups originated in Western Europe while some Near Eastern haplogroups were identified at low frequencies. However, there was an evident genetic similarity between the Central Italian samples and Near Eastern populations mainly in the male genetic pool. CONCLUSIONS The samples highlight an overall European genetic pattern both for mtDNA and Y chromosome. Notwithstanding this scenario, Y chromosome haplogroup Q, a common paternal lineage in Central/Western Asia but almost Europe-wide absent, was found, suggesting that Central Italy could have hosted a settlement from Anatolia that might be supported by cultural, topographic and genetic evidence.
Collapse
Affiliation(s)
- Francesco Messina
- Department of Biology, Center of Molecular Anthropology for ancient DNA study, University of Rome 'Tor Vergata', Via della Ricerca Scientifica n. 1, 00133, Rome, Italy
| | - Andrea Finocchio
- Department of Biology, Center of Molecular Anthropology for ancient DNA study, University of Rome 'Tor Vergata', Via della Ricerca Scientifica n. 1, 00133, Rome, Italy
| | - Mario Federico Rolfo
- Department of Historical, Philosophical and Social Sciences, Cultural and Territory Heritage, University of Rome 'Tor Vergata', Via Columbia n. 1, 00173, Rome, Italy
| | - Flavio De Angelis
- Department of Biology, Center of Molecular Anthropology for ancient DNA study, University of Rome 'Tor Vergata', Via della Ricerca Scientifica n. 1, 00133, Rome, Italy
| | - Cesare Rapone
- Carabinieri, Scientific Investigation Department, Viale di Tor di Quinto 151, 00191, Rome, Italy
| | - Martina Coletta
- Department of Biology, Center of Molecular Anthropology for ancient DNA study, University of Rome 'Tor Vergata', Via della Ricerca Scientifica n. 1, 00133, Rome, Italy
| | - Cristina Martínez-Labarga
- Department of Biology, Center of Molecular Anthropology for ancient DNA study, University of Rome 'Tor Vergata', Via della Ricerca Scientifica n. 1, 00133, Rome, Italy
| | - Gianfranco Biondi
- Department of Environmental Sciences, University of L'Aquila, Via Vetoio, 67010, L'Aquila, Italy
| | - Andrea Berti
- Carabinieri, Scientific Investigation Department, Viale di Tor di Quinto 151, 00191, Rome, Italy
| | - Olga Rickards
- Department of Biology, Center of Molecular Anthropology for ancient DNA study, University of Rome 'Tor Vergata', Via della Ricerca Scientifica n. 1, 00133, Rome, Italy
| |
Collapse
|
8
|
Kundu S, Ghosh SK. Trend of different molecular markers in the last decades for studying human migrations. Gene 2014; 556:81-90. [PMID: 25510397 DOI: 10.1016/j.gene.2014.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 12/07/2014] [Accepted: 12/11/2014] [Indexed: 12/15/2022]
Abstract
Anatomically modern humans are known to have widely migrated throughout history. Different scientific evidences suggest that the entire human population descended from just several thousand African migrants. About 85,000 years ago, the first wave of human migration was out of Africa, that followed the coasts through the Middle East, into Southern Asia via Sri Lanka, and in due course around Indonesia and into Australia. Another wave of migration between 40,000 and 12,000 years ago brought humans northward into Europe. However, the frozen north limited human expansion in Europe, and created a land bridge, "Bering land bridge", connecting Asia with North America about 25,000 years ago. Although fossil data give the most direct information about our past, it has certain anomalies. So, molecular archeologists are now using different molecular markers to trace the "most recent common ancestor" and also the migration pattern of modern humans. In this study, we have studied the trend of molecular markers and also the methodologies implemented in the last decades (2003-2014). From our observation, we can say that D-loop region of mtDNA and Y chromosome based markers are predominant. Nevertheless, mtDNA, especially the D-loop region, has some unique features, which makes it a more effective marker for tracing prehistoric footprints of modern human populations. Although, natural selection should also be taken into account in studying mtDNA based human migration. As per technology is concerned, Sanger sequencing is the major technique that is being used in almost all studies. But, the emergence of different cost-effective-and-easy-to-handle NGS platforms has increased its popularity over Sanger sequencing in studying human migration.
Collapse
Affiliation(s)
- Sharbadeb Kundu
- Molecular Medicine Laboratory, Department of Biotechnology, Assam University, Silchar, Pin-788011 Assam, India
| | - Sankar Kumar Ghosh
- Molecular Medicine Laboratory, Department of Biotechnology, Assam University, Silchar, Pin-788011 Assam, India.
| |
Collapse
|
9
|
Capocasa M, Taglioli L, Anagnostou P, Paoli G, Danubio ME. Determinants of marital behaviour in five Apennine communities of Central Italy inferred by surname analysis, repeated pairs and kinship estimates. HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2013; 65:64-74. [PMID: 24012323 DOI: 10.1016/j.jchb.2013.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 07/23/2013] [Indexed: 10/26/2022]
Abstract
The work makes use of surname analysis, repeated pairs and kinship estimates in 11,009 marriage records celebrated in five communities of the Italian Central Apennine (Celano, Lecce dei Marsi, Ortucchio, Roio, Villavallelonga) from 1802 to 1965 with the objective to deepen knowledge of the relative influence of several determinants on their marital behaviour. These towns are part of the same geographic and economic environment: the slopes of the ancient Fucino Lake. This work further elaborates the results from previous studies on the bio-demographic model of the region. The data were analyzed according to three periods of approximately 50 years. Results show the highest inbreeding coefficients in the pastoral towns of Roio and Villavallelonga. Repeated pair analysis highlights a certain degree of population subdivision which declined in time in Celano, Lecce dei Marsi and Ortucchio. The highest and increasing values of RP-RPr in time in Roio suggest a general reduction in genetic heterogeneity. This is possibly due to the celebration of marriages among families selected on the economic basis of pastoralism, as this town historically has had a leading tradition of sheep-farming. Villavallelonga, excluding isonymous marriages, shows an increase in repeated pair unions in time, thus revealing a substructure with marriages among preferred lineages. This is in line with previous results on consanguineous marriages which indicated the tendency of avoiding unions between close relatives in this small geographic isolate. This study demonstrates the influence of geographical (altitude) and social factors (pastoralism) on the marital structures of the investigated populations.
Collapse
Affiliation(s)
- M Capocasa
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; Istituto Italiano di Antropologia, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - L Taglioli
- Dipartimento di Biologia, Università di Pisa, Via Luca Ghini 13, 56126 Pisa, Italy
| | - P Anagnostou
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; Istituto Italiano di Antropologia, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - G Paoli
- Dipartimento di Biologia, Università di Pisa, Via Luca Ghini 13, 56126 Pisa, Italy
| | - M E Danubio
- Dipartimento di Medicina clinica, sanità pubblica, scienze della vita e dell'ambiente, Università di L'Aquila, Piazzale Salvatore Tommasi 1, L'Aquila, Italy; Istituto Italiano di Antropologia, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
10
|
Brisighelli F, Álvarez-Iglesias V, Fondevila M, Blanco-Verea A, Carracedo Á, Pascali VL, Capelli C, Salas A. Uniparental markers of contemporary Italian population reveals details on its pre-Roman heritage. PLoS One 2012; 7:e50794. [PMID: 23251386 PMCID: PMC3519480 DOI: 10.1371/journal.pone.0050794] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/24/2012] [Indexed: 11/18/2022] Open
Abstract
Background According to archaeological records and historical documentation, Italy has been a melting point for populations of different geographical and ethnic matrices. Although Italy has been a favorite subject for numerous population genetic studies, genetic patterns have never been analyzed comprehensively, including uniparental and autosomal markers throughout the country. Methods/Principal Findings A total of 583 individuals were sampled from across the Italian Peninsula, from ten distant (if homogeneous by language) ethnic communities — and from two linguistic isolates (Ladins, Grecani Salentini). All samples were first typed for the mitochondrial DNA (mtDNA) control region and selected coding region SNPs (mtSNPs). This data was pooled for analysis with 3,778 mtDNA control-region profiles collected from the literature. Secondly, a set of Y-chromosome SNPs and STRs were also analyzed in 479 individuals together with a panel of autosomal ancestry informative markers (AIMs) from 441 samples. The resulting genetic record reveals clines of genetic frequencies laid according to the latitude slant along continental Italy – probably generated by demographical events dating back to the Neolithic. The Ladins showed distinctive, if more recent structure. The Neolithic contribution was estimated for the Y-chromosome as 14.5% and for mtDNA as 10.5%. Y-chromosome data showed larger differentiation between North, Center and South than mtDNA. AIMs detected a minor sub-Saharan component; this is however higher than for other European non-Mediterranean populations. The same signal of sub-Saharan heritage was also evident in uniparental markers. Conclusions/Significance Italy shows patterns of molecular variation mirroring other European countries, although some heterogeneity exists based on different analysis and molecular markers. From North to South, Italy shows clinal patterns that were most likely modulated during Neolithic times.
Collapse
Affiliation(s)
- Francesca Brisighelli
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
- Forensic Genetics Laboratory, Institute of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Vanesa Álvarez-Iglesias
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
| | - Manuel Fondevila
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
| | - Alejandro Blanco-Verea
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
| | - Ángel Carracedo
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
- Fundación Pública Galega de Medicina Xenómica (FPGMX-SERGAS), CIBER enfermedades raras, Santiago de Compostela, Galicia, Spain
| | - Vincenzo L. Pascali
- Forensic Genetics Laboratory, Institute of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cristian Capelli
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Antonio Salas
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
- * E-mail:
| |
Collapse
|
11
|
Repiská V, Lehocky’ I, Galatová J, Böhmer D. Haplotypes of mtDNA-HV1/HV2 in non-related individuals of caucasian population living in the Slovak Republic. Mol Biol 2010. [DOI: 10.1134/s0026893310060038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|