1
|
Du J, Zong L, Li M, Yu K, Qiao Y, Yuan Q, Pu X. Two-Pronged Anti-Tumor Therapy by a New Polymer-Paclitaxel Conjugate Micelle with an Anti-Multidrug Resistance Effect. Int J Nanomedicine 2022; 17:1323-1341. [PMID: 35345783 PMCID: PMC8957348 DOI: 10.2147/ijn.s348598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Cancerous tumors are still a major disease that threatens human life, with tumor multidrug resistance (MDR) being one of the main reasons for the failure of chemotherapy. Thus, reversing tumor MDR has become a research focus of medical scientists. Methods Here, a reduction-sensitive polymer prodrug micelle, mPEG-DCA-SS-PTX (PDSP), was manufactured with a new polymer inhibitor of drug resistance as a carrier to overcome MDR and improve the anti-tumor effect of PTX. Results The PDSP micelles display good stability, double-responsive drug release, and excellent biocompatibility. The PDSP micelles reduced the cytotoxicity of PTX to normal HL-7702 cells and enhanced that to SMMC-7721 and MCF-7 cells in vitro. Improved sensitivity of A549/ADR to PDSP was also observed in vitro. Furthermore, in vivo experiments show reduced systemic toxicity and enhanced therapeutic efficacy of PTX to H22 subcutaneous tumor-bearing mice. Conclusion This work proves that the reduction-sensitive polymer prodrug micelles carried by the new polymer inhibitor can be used as an alternative delivery system to target tumors and reverse MDR for paclitaxel and other tumor-resistant drugs.
Collapse
Affiliation(s)
- Juan Du
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, People’s Republic of China
| | - Lanlan Zong
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Mengmeng Li
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Keke Yu
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Yonghui Qiao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Qi Yuan
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Xiaohui Pu
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| |
Collapse
|
2
|
Zhang YW, Tu LL, Zhang Y, Pan JC, Zheng GL, Yin LN. Liver-targeted delivery of asiatic acid nanostructured lipid carrier for the treatment of liver fibrosis. Drug Deliv 2021; 28:2534-2547. [PMID: 34854788 PMCID: PMC8648005 DOI: 10.1080/10717544.2021.2008054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Liver fibrosis is a major global health concern. Management of chronic liver disease is severely restricted in clinics due to ineffective treatment approaches. However, a lack of targeted therapy may aggravate this condition. Asiatic acid (AA), a pentacyclic triterpenoid acid, can effectively protect the liver from hepatic disorders. However, the pharmaceutical application of AA is limited by low oral bioavailability and poor targeting efficiency. This study synthesized a novel liver-targeting material from PEG-SA, chemically linked to ursodeoxycholic acid (UA), and utilized it to modify AA nanostructured lipid carriers (UP-AA-NLC) with enhanced targeting and improved efficacy. The formulation of UP-AA-NLC was optimized via the Box–Behnken Experimental Design (BBD) and characterized by size, zeta potential, TEM, DSC, and XRD. Furthermore, in vitro antifibrotic activity and proliferation of AA and NLCs were assessed in LX-2 cells. The addition of UP-AA-NLC significantly stimulated the TGF-beta1-induced expression of α-SMA, FN1, and Col I α1. In vivo near-infrared fluorescence imaging and distribution trials in rats demonstrated that UP-AA-NLC could significantly improve oral absorption and liver-targeting efficiency. Oral UP-AA-NLC greatly alleviated carbon tetrachloride-induced liver injury and fibrosis in rats in a dosage-dependent manner, as reflected by serum biochemical parameters (AST, ALT, and ALB), histopathological features (H&E and Masson staining), and antioxidant activity parameters (SOD and MDA). Also, treatment with UP-AA-NLC lowered liver hydroxyproline levels, demonstrating a reduction of collagen accumulation in the fibrotic liver. Collectively, optimized UP-AA-NLC has potential application prospects in liver-targeted therapy and holds great promise as a drug delivery system for treating liver diseases.
Collapse
Affiliation(s)
- Ya-Wen Zhang
- Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China
| | - Ling-Lan Tu
- School of Biological Engineering, Hangzhou Medical College, Hangzhou, China
| | - Yi Zhang
- Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China
| | - Jie-Chao Pan
- Hangzhou Xianju Technology Innovation Co. Ltd, Hangzhou, China
| | - Gao-Li Zheng
- Safety Evaluation Research Center, Hangzhou Medical College, Hangzhou, China
| | - Li-Na Yin
- Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
3
|
Zong L, Wang H, Hou X, Fu L, Wang P, Xu H, Yu W, Dai Y, Qiao Y, Wang X, Yuan Q, Pang X, Han G, Pu X. A novel GSH-triggered polymeric nanomicelles for reversing MDR and enhancing antitumor efficiency of hydroxycamptothecin. Int J Pharm 2021; 600:120528. [PMID: 33781880 DOI: 10.1016/j.ijpharm.2021.120528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/22/2021] [Accepted: 03/21/2021] [Indexed: 12/15/2022]
Abstract
Tumor multidrug resistance (MDR) is one of the main reasons for the failure of clinical chemotherapy. Here, a bio-responsive anti-drug-resistant polymer micelle that can respond to the reductive GSH in the tumor microenvironment (TME) for delivery of HCPT was designed. A new type of polymer with anti-drug resistance and anti-tumor effect was synthesized and used to encapsulated HCPT to form reduction-sensitive micelles (PDSAH) by a thin-film dispersion method. It is demonstrated that the micelle formulation improves the anti-tumor activity and biosafety of HCPT, and also plays a significant role in reversing the drug resistance, which contributes to inhibiting the tumor growth and prolonging the survival time of H22 tumor-bearing mice. The results indicate that this nanoplatform can serve as a flexible and powerful system for delivery of other drugs that are tolerated by tumors or bacteria.
Collapse
Affiliation(s)
- Lanlan Zong
- Institute of Pharmacy, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| | - Haiyan Wang
- Institute of Pharmacy, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| | - Xianqiao Hou
- Institute of Pharmacy, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| | - Like Fu
- Institute of Pharmacy, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| | - Peirong Wang
- Institute of Pharmacy, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| | - Hongliang Xu
- Institute of Pharmacy, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| | - Wenjie Yu
- Institute of Pharmacy, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| | - Yuxin Dai
- Institute of Pharmacy, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| | - Yonghui Qiao
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Xuefeng Wang
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510632, China
| | - Qi Yuan
- Institute of Pharmacy, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| | - Xiaobin Pang
- Institute of Pharmacy, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Guang Han
- Institute of Pharmacy, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Xiaohui Pu
- Institute of Pharmacy, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| |
Collapse
|
4
|
Water-soluble nanoparticles from PEGylated linear cationic block copolymers and anionic surfactants. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4236-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Tang HX, Zhao TW, Zheng T, Sheng YJ, Zheng HS, Zhang YS. Liver-targeting liposome drug delivery system and its research progress in liver diseases. Shijie Huaren Xiaohua Zazhi 2016; 24:4238-4246. [DOI: 10.11569/wcjd.v24.i31.4238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liposome-based targeted therapy is mainly divided into active targeting, passive targeting, and physical and chemical targeting. In terms of liver targeting, because of specificity, active liver-targeting liposomes have received more and more attention, and these types of liposomes can be used in liver fibrosis, hepatitis and other chronic liver diseases. In addition, the particle size could control the passive liver targeting of liposomes, while the liver-targeted liposomes of the physical and chemical targeting type have advantages in treating hepatic carcinoma. In this paper, we focus on the basics and application of liver-targeting liposome drug delivery system in hepatic diseases.
Collapse
|
6
|
Schadock-Hewitt AJ, Bruce TF, Marcus RK. Evidence for the Intercalation of Lipid Acyl Chains into Polypropylene Fiber Matrices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10418-10425. [PMID: 26381380 DOI: 10.1021/acs.langmuir.5b01964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Headgroup-functionalized lipids are being developed as ligand tethers for high selectivity separations on polypropylene capillary-channeled polymer fiber stationary phases. Surface modification is affected under ambient conditions from aqueous solution. This basic methodology has promise in many areas where robust modifications are desired on hydrophobic surfaces. In order to understand the mode of adsorption of the lipid tail to the polypropylene surface, lipids labeled with the environmentally sensitive 7-nitro-2-1,3-benzoxadiazol-4-yl (NBD) fluorophore were used, with NBD covalently attached to the headgroup (NBD-PE) or the acyl chain (acyl NBD-PE) of the lipid. When modified with the acyl NBD-PE, fluorescence imaging of the fiber at excitation wavelengths increasing from 470 to 510 nm caused a 32 nm shift in emission toward the red edge of the absorption band, indicating that the NBD molecule (and thus the lipid tail) is motionally restricted. Fluorescence imaging on fibers modified with NBD-PE or the free NBD-Cl dye molecule yields no change in the emission response. The results of these imaging studies provide evidence that the acyl chain portions of the lipids intercalate into free volume of the polypropylene fiber structure, yielding a robust means of surface modification and the potential for high ligand densities.
Collapse
Affiliation(s)
- Abby J Schadock-Hewitt
- Department of Chemistry, Biosystems Research Complex, and ‡Clemson Light Imaging Facility, Life Sciences Building, Clemson University , Clemson, South Carolina 29634, United States
| | - Terri F Bruce
- Department of Chemistry, Biosystems Research Complex, and ‡Clemson Light Imaging Facility, Life Sciences Building, Clemson University , Clemson, South Carolina 29634, United States
| | - R Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, and ‡Clemson Light Imaging Facility, Life Sciences Building, Clemson University , Clemson, South Carolina 29634, United States
| |
Collapse
|
7
|
Schadock-Hewitt AJ, Marcus RK. Loading characteristics and chemical stability of headgroup-functionalized poly(ethylene glycol)-lipid ligand tethers on polypropylene capillary-channeled polymer fibers. J Sep Sci 2014; 37:3595-602. [DOI: 10.1002/jssc.201400807] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 11/06/2022]
Affiliation(s)
| | - R. Kenneth Marcus
- Department of Chemistry; Biosystems Research Complex; Clemson University; Clemson SC USA
| |
Collapse
|
8
|
Schadock-Hewitt AJ, Pittman JJ, Christensen KA, Marcus RK. Head group-functionalized poly(ethyleneglycol)–lipid (PEG–lipid) surface modification for highly selective analyte extractions on capillary-channeled polymer (C-CP) fibers. Analyst 2014; 139:2108-13. [DOI: 10.1039/c3an01899g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
9
|
Chen Z, Xiao L, Liu W, Liu D, Xiao YY, Chen J, Liu X, Li WD, Li W, Cai BC. Novel materials which possess the ability to target liver cells. Expert Opin Drug Deliv 2012; 9:649-56. [PMID: 22480167 DOI: 10.1517/17425247.2012.679261] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Hepatic-targeted drug delivery systems are designed to treat diseases of the liver. However, since there are several different types of liver diseases that are caused by different cells, it is important to select the proper materials to target these different cells. AREAS COVERED This review addresses novel materials that possess the ability to target liver cells via receptor-ligand processes and offers an insight into the aspects of formulation design. It also discusses several approaches used to enhance the targeting efficiency of drug delivery systems to receptors in the liver cells. In addition, the delivery efficiency and therapeutic efficacy of these materials in the treatment of acute or chronic liver diseases is highlighted. EXPERT OPINION Further research into the use of clinical materials and the design of smart materials for multi-drug delivery to different organelles is important for future studies on these new materials. It is hoped that these targeted therapeutics will benefit patients with liver disorders in the near future.
Collapse
Affiliation(s)
- Zhipeng Chen
- Nanjing University of Chinese Medicine, Department of Pharmacy, Nanjing 210046, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chen ZP, Zhu JB, Chen HX, Xiao YY, Liu D, Chen J, Lu T, Cai B. Synthesis and application of methoxy poly(ethylene glycol)-bile salts conjugates in physicochemical characterization and the pharmacokinetics of the liposomal bifendate in rats. J Appl Polym Sci 2012. [DOI: 10.1002/app.34474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|