Wong TW. Alginate graft copolymers and alginate-co-excipient physical mixture in oral drug delivery.
J Pharm Pharmacol 2011;
63:1497-512. [PMID:
22060280 DOI:
10.1111/j.2042-7158.2011.01347.x]
[Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES
Use of alginate graft copolymers in oral drug delivery reduces dosage form manufacture complexity with reference to mixing or coating processes. It is deemed to give constant or approximately steady weight ratio of alginate to covalently attached co-excipient in copolymers, thereby leading to controllable matrix processing and drug release. This review describes various grafting approaches and their outcome on oral drug release behaviour of alginate graft copolymeric matrices. It examines drug release modulation mechanism of alginate graft copolymers against that of co-excipients in non-grafted formulations.
KEY FINDINGS
Drug release from alginate matrices can be modulated through using either co-excipients or graft copolymers via changing their swelling, erosion, hydrophobicity/hydrophilicity, porosity and/or drug adsorption capacity. However, it is not known if the drug delivery performance of formulations prepared using alginate graft copolymers is superior to those incorporating graft-equivalent co-excipient physically in a dosage form without grafting but at the corresponding graft weight, owing to limited studies being available.
CONCLUSIONS
The value of alginate graft copolymers as the potential alternative to alginate-co-excipient physical mixture in oral drug delivery cannot be entirely defined by past and present research. Such an issue is complicated by the lack of green chemistry graft copolymer synthesis approach, high grafting process cost, complications and hazards, and the formed graft copolymers having unknown toxicity. Future research will need to address these matters to achieve a widespread commercialization and industrial application of alginate graft copolymers in oral drug delivery.
Collapse