1
|
Ibarra-Sánchez LÁ, Gámez-Méndez A, Martínez-Ruiz M, Nájera-Martínez EF, Morales-Flores BA, Melchor-Martínez EM, Sosa-Hernández JE, Parra-Saldívar R, Iqbal HMN. Nanostructures for drug delivery in respiratory diseases therapeutics: Revision of current trends and its comparative analysis. J Drug Deliv Sci Technol 2022; 70:103219. [PMID: 35280919 PMCID: PMC8896872 DOI: 10.1016/j.jddst.2022.103219] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/02/2022] [Accepted: 02/26/2022] [Indexed: 02/08/2023]
Abstract
Respiratory diseases are leading causes of death and disability in developing and developed countries. The burden of acute and chronic respiratory diseases has been rising throughout the world and represents a major problem in the public health system. Acute respiratory diseases include pneumonia, influenza, SARS-CoV-2 and MERS viral infections; while chronic obstructive pulmonary disease (COPD), asthma and, occupational lung diseases (asbestosis, pneumoconiosis) and other parenchymal lung diseases namely lung cancer and tuberculosis are examples of chronic respiratory diseases. Importantly, chronic respiratory diseases are not curable and treatments for acute pathologies are particularly challenging. For that reason, the integration of nanotechnology to existing drugs or for the development of new treatments potentially benefits the therapeutic goals by making drugs more effective and exhibit fewer undesirable side effects to treat these conditions. Moreover, the integration of different nanostructures enables improvement of drug bioavailability, transport and delivery compared to stand-alone drugs in traditional respiratory therapy. Notably, there has been great progress in translating nanotechnology-based cancer therapies and diagnostics into the clinic; however, researchers in recent years have focused on the application of nanostructures in other relevant pulmonary diseases as revealed in our database search. Furthermore, polymeric nanoparticles and micelles are the most studied nanostructures in a wide range of diseases; however, liposomal nanostructures are recognized to be some of the most successful commercial drug delivery systems. In conclusion, this review presents an overview of the recent and relevant research in drug delivery systems for the treatment of different pulmonary diseases and outlines the trends, limitations, importance and application of nanomedicine technology in treatment and diagnosis and future work in this field.
Collapse
Affiliation(s)
- Luis Ángel Ibarra-Sánchez
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Ana Gámez-Méndez
- Universidad de Monterrey, Department of Basic Sciences, Av. Ignacio Morones Prieto 4500 Pte., 66238, San Pedro Garza García, Nuevo León, Mexico
| | - Manuel Martínez-Ruiz
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Erik Francisco Nájera-Martínez
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Brando Alan Morales-Flores
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Elda M Melchor-Martínez
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Roberto Parra-Saldívar
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Hafiz M N Iqbal
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| |
Collapse
|
2
|
Togami K, Maruta Y, Nanbu M, Tada H, Chono S. Prolonged distribution of aerosolized PEGylated liposomes in the lungs of mice with bleomycin-induced pulmonary fibrosis. Drug Dev Ind Pharm 2020; 46:1873-1880. [PMID: 32940095 DOI: 10.1080/03639045.2020.1825473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Idiopathic pulmonary fibrosis (IPF) is a progressive and chronic lung disease characterized by abnormal remodeling of the lung parenchyma with subsequent scarring of the alveolar structure. In this study, we examined the distribution characteristics of aerosolized polyethylene glycol (PEG)ylated liposomes in the lungs of mice with bleomycin-induced pulmonary fibrosis. SIGNIFICANCE The present study details the utility of aerosolized PEGylated liposomes for improving intrapulmonary pharmacokinetics in fibrotic lungs. METHODS Aerosolized PEGylated liposomes were administered to fibrotic mouse lungs using a MicroSprayer. Intrapulmonary pharmacokinetics was evaluated via in vivo imaging, measurement of liposome concentrations in bronchoalveolar lavage fluid (BALF) and alveolar macrophages (AMs), and observation of lung tissue sections. In addition, in vitro accumulation experiments using WI-38, A549, and RAW264.7 cells were performed. RESULTS The decrease of the fluorescence intensity of the PEGylated liposomes was slower than that of the non-modified liposomes. Compared with the non-modified liposomes, the PEGylated liposomes were determined higher in BALF, whereas those in the AMs were lower. Both PEGylated and non-modified liposomes were widely dispersed in fibrotic regions in tissue sections. No difference in accumulation in WI-38 and A549 cells was noted between PEGylated and non-modified liposomes, whereas the PEGylated liposomes exhibited lower intracellular accumulation than non-modified liposomes in RAW264.7 cells. CONCLUSION Aerosolized drug delivery systems using PEGylated liposomes exhibited prolonged distribution in both healthy and fibrotic mouse lungs. PEGylated liposomes were determined to be efficient drug delivery systems for anti-fibrotic agents targeting lung fibroblasts and alveolar epithelial cells for optimizing the treatment of IPF.
Collapse
Affiliation(s)
- Kohei Togami
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan.,Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan.,Creation Research Institute of Life Science in KITA-no-DAICHI, Sapporo, Japan
| | - Yuki Maruta
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| | - Mao Nanbu
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| | - Hitoshi Tada
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan.,Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| | - Sumio Chono
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan.,Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan.,Creation Research Institute of Life Science in KITA-no-DAICHI, Sapporo, Japan
| |
Collapse
|
3
|
Evaluation of various tissue-clearing techniques for the three-dimensional visualization of liposome distribution in mouse lungs at the alveolar scale. Int J Pharm 2019; 562:218-227. [DOI: 10.1016/j.ijpharm.2019.03.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 12/22/2022]
|
4
|
Farhangi M, Mahboubi A, Kobarfard F, Vatanara A, Mortazavi SA. Optimization of a dry powder inhaler of ciprofloxacin-loaded polymeric nanomicelles by spray drying process. Pharm Dev Technol 2019; 24:584-592. [DOI: 10.1080/10837450.2018.1545237] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mahdieh Farhangi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Mahboubi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food Safety Research Center, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Kobarfard
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Vatanara
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mortazavi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Yang S. Development and Pharmacokinetics Study of Antifungal Peptide Nanoliposomes by Liquid Chromatography-tandem Mass Spectrometry. CURR PHARM ANAL 2019. [DOI: 10.2174/1573412914666180307155328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The therapeutic ability and application of antifungal peptide (APs) are limited
by their physico-chemical and biological properties, the nano-liposomal encapsulation would improve
the in vivo circulation and stability.
</P><P>
Objective: To develop a long-circulating liposomal delivery systems encapsulated APs-CGA-N12 with
PEGylated lipids and cholesterol, and investigated through in vivo pharmacokinetics.
Methods:
The liposomes were prepared and characterized, a rapid and simple liquid chromatographytandem
mass spectrometry (LC-MS/MS) assay was developed for the determination of antifungal peptide
in vivo, the pharmacokinetic characteristics of APs liposomes were evaluated in rats.
Results:
Liposomes had a large, unilamellar structure, particle size and Zeta potential ranged from 160
to 185 nm and -0.55 to 1.1 mV, respectively. The results indicated that the plasma concentration of
peptides in reference solutions rapidly declined after intravenous administration, whereas the
liposomeencapsulated ones showed slower elimination. The AUC(0-∞) was increased by 3.0-fold in
liposomes in comparison with standard solution (20 mg·kg-1), the half-life (T1/2) was 1.6- and 1.5-fold
higher compared to the reference groups of 20 and 40 mg·kg-1, respectively.
Conclusion:
Therefore, it could be concluded that liposomal encapsulation effectively improved the
bioavailability and pharmacokinetic property of antifungal peptides.
Collapse
Affiliation(s)
- Shuoye Yang
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
6
|
Nnamani P, Ugwu A, Ibezim E, Onoja S, Odo A, Windbergs M, Rossi C, Lehr CM, Attama A. Preparation, characterisation and in vitro antibacterial property of ciprofloxacin-loaded nanostructured lipid carrier for treatment of Bacillus subtilis infection. J Microencapsul 2019; 36:32-42. [PMID: 30758259 DOI: 10.1080/02652048.2019.1582724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Context: In this study, controlled ciprofloxacin (CIPRO) nanostrustructured lipid carriers of Precirol® ATO 5/Transcutol® HP (batch A) and tallow fat/Transcutol® HP (batch B) was carreid out. Objective: The aim was to improve solubility and bioavailability of CIPRO. Objective: Study of controlled ciprofloxacin (CIPRO) nanostructured lipid carriers of Precirol® ATO 5/Transcutol® HP (batch A) and tallow fat/Transcutol® HP (batch B). Methods: CIPRO concentrations C1-5 (0.0, 0.2, 0.5, 0.8, and 1.0% w/w) as AC1-5 and BC1-5 were prepared by hot homogenisation and characterised by zetasizer, differential scanning calorimetry, Fourier transform infra-red spectroscopy, in vitro drug release and growth inhibitory zone diameter (IZD) on agar-seeded Bacillus subtilis. Results: AC5 achieved polydispersed particles of ∼605 nm, 92% encapsulation efficiency (EE) and -28 mV similar to BC5 (∼789 nm, 91% EE, and -31 mV). Crystallinity indices (AC5 and BC5) were low at 3 and 5%, respectively. CIPRO release in AC5 was ∼98% in SGF (pH 1.2) and BC5 similarly ∼98% in SIF (pH 6.8). Conclusions: AC5 had superior growth inhibition of B. subtilis at lower concentration (1.2 µg/mL) than BC5 and CIPRO controls; hence could serve as possible sustained delivery system of CIPRO.
Collapse
Affiliation(s)
- Petra Nnamani
- a Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Drug Delivery and Nanomedicines Research Group , University of Nigeria , Nsukka , Nigeria.,d Department of Drug Delivery , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University , Saarbrücken , Germany
| | - Agatha Ugwu
- a Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Drug Delivery and Nanomedicines Research Group , University of Nigeria , Nsukka , Nigeria
| | - Emmanuel Ibezim
- a Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Drug Delivery and Nanomedicines Research Group , University of Nigeria , Nsukka , Nigeria
| | - Simon Onoja
- b Department of Human Nutrition and Dietetics , University of Nigeria , Nsukka , Nigeria
| | - Amelia Odo
- c Department of Human Kinetics and Health Education , University of Nigeria , Nsukka , Nigeria
| | - Maike Windbergs
- d Department of Drug Delivery , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University , Saarbrücken , Germany
| | - Chiara Rossi
- d Department of Drug Delivery , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University , Saarbrücken , Germany
| | - Claus-Michael Lehr
- d Department of Drug Delivery , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University , Saarbrücken , Germany.,e Helmholtz Centre for Infection Research (HZI), Saarland University , Saarbrücken , Germany
| | - Anthony Attama
- a Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Drug Delivery and Nanomedicines Research Group , University of Nigeria , Nsukka , Nigeria
| |
Collapse
|
7
|
Lamy B, Tewes F, Serrano DR, Lamarche I, Gobin P, Couet W, Healy AM, Marchand S. New aerosol formulation to control ciprofloxacin pulmonary concentration. J Control Release 2017; 271:118-126. [PMID: 29277683 DOI: 10.1016/j.jconrel.2017.12.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 01/07/2023]
Abstract
Ciprofloxacin (CIP) apparent permeability across a pulmonary epithelium model can be controlled by the affinity of its complex with a metal cation. The higher the complex affinity, the larger is the reduction in CIP apparent permeability. The aim of this study was to evaluate if the control of the CIP apparent permeability observed in vitro could be transposed in vivo to control the CIP lung-to-blood absorption rate and CIP concentrations in the lung epithelial lining fluid (ELF) after intratracheal (IT) administration. Two types of innovative inhalable microparticles loaded with the low-affinity CIP-calcium complex (CIP-Ca) or with the high-affinity CIP-copper complex (CIP-Cu) were formulated and characterized. Then, ELF and plasma pharmacokinetics of CIP were studied in rats after IT administration of these two types of microparticles and of a CIP solution (2.5mg/kg). The presence of Cu2+ had little effect on the microparticle properties and the dry powder had aerodynamic properties which allowed it to reach the lungs. CIP concentrations in ELF were much higher after CIP-Cu microparticles IT administration compared to the other two formulations, with mean AUCELF to AUCu,plasma ratios equal to 1069, 203 and 9.8 after CIP-Cu microparticles, CIP-Ca microparticles and CIP solution pulmonary administration, respectively. No significant modification of lung toxicity markers was found (lactate dehydrogenase and total protein). CIP complexation with Cu2+ seems to be an interesting approach to obtain high CIP concentrations in the ELF of lungs after dry powder IT administration.
Collapse
Affiliation(s)
- Barbara Lamy
- INSERM, U1070, UFR de Médecine Pharmacie, Université de Poitiers, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Frederic Tewes
- INSERM, U1070, UFR de Médecine Pharmacie, Université de Poitiers, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9, France.
| | - Dolores Remedios Serrano
- Synthesis and Solid State Pharmaceutical Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Panoz Institute, Dublin 2, Ireland
| | - Isabelle Lamarche
- INSERM, U1070, UFR de Médecine Pharmacie, Université de Poitiers, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Patrice Gobin
- Laboratoire de Toxicologie-Pharmacocinétique, CHU of Poitiers, 2 rue de la Milétrie, 86000 Poitiers, France
| | - William Couet
- INSERM, U1070, UFR de Médecine Pharmacie, Université de Poitiers, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9, France; Laboratoire de Toxicologie-Pharmacocinétique, CHU of Poitiers, 2 rue de la Milétrie, 86000 Poitiers, France
| | - Anne Marie Healy
- Synthesis and Solid State Pharmaceutical Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Panoz Institute, Dublin 2, Ireland
| | - Sandrine Marchand
- INSERM, U1070, UFR de Médecine Pharmacie, Université de Poitiers, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9, France; Laboratoire de Toxicologie-Pharmacocinétique, CHU of Poitiers, 2 rue de la Milétrie, 86000 Poitiers, France.
| |
Collapse
|
8
|
Chono S, Togami K, Itagaki S. Aerosolized liposomes with dipalmitoyl phosphatidylcholine enhance pulmonary absorption of encapsulated insulin compared with co-administered insulin. Drug Dev Ind Pharm 2017; 43:1892-1898. [PMID: 28689439 DOI: 10.1080/03639045.2017.1353521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE We have previously shown that aerosolized liposomes with dipalmitoyl phosphatidylcholine (DPPC) enhance the pulmonary absorption of encapsulated insulin. In this study, we aimed to compare insulin encapsulated into the liposomes versus co-administration of empty liposomes and unencapsulated free insulin, where the DPCC liposomes would serve as absorption enhancer. SIGNIFICANCE The present study provides the useful information for development of noninvasive treatment of diabetes. METHODS Co-administration of empty DPPC liposomes and unencapsulated free insulin was investigated in vivo to assess the potential enhancement in protein pulmonary absorption. Co-administration was compared to DPPC liposomes encapsulating insulin, and free insulin. RESULTS DPPC liposomes enhanced the pulmonary absorption of unencapsulated free insulin; however, the enhancing effect was lower than that of the DPPC liposomes encapsulating insulin. The mechanism of the pulmonary absorption of unencapsulated free insulin by DPPC liposomes involved the opening of epithelial cell space in alveolar mucosa, and not mucosal cell damage, similar to that of the DPPC liposomes encapsulating insulin. In an in vitro stability test, insulin in the alveolar mucus layer that covers epithelial cells was stable. These findings suggest that, although unencapsulated free insulin spreads throughout the alveolar mucus layer, the concentration of insulin released near the absorption surface is increased by the encapsulation of insulin into DPPC liposomes and the absorption efficiency is also increased. CONCLUSION We revealed that the encapsulation of insulin into DPPC liposomes is more effective for pulmonary insulin absorption than co-administration of DPPC liposomes and unencapsulated free insulin.
Collapse
Affiliation(s)
- Sumio Chono
- a Division of Pharmaceutics , Hokkaido Pharmaceutical University School of Pharmacy , Hokkaido , Japan
| | - Kohei Togami
- a Division of Pharmaceutics , Hokkaido Pharmaceutical University School of Pharmacy , Hokkaido , Japan
| | - Shirou Itagaki
- b Department of Pharmacy , Hirosaki University School of Medicine & Hospital , Aomori , Japan
| |
Collapse
|
9
|
Togami K, Yamaguchi K, Chono S, Tada H. Evaluation of permeability alteration and epithelial–mesenchymal transition induced by transforming growth factor-β1 in A549, NCI-H441, and Calu-3 cells: Development of an in vitro model of respiratory epithelial cells in idiopathic pulmonary fibrosis. J Pharmacol Toxicol Methods 2017; 86:19-27. [DOI: 10.1016/j.vascn.2017.02.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 11/11/2016] [Accepted: 02/27/2017] [Indexed: 10/20/2022]
|
10
|
Kaneko K, Togami K, Yamamoto E, Wang S, Morimoto K, Itagaki S, Chono S. Sustained distribution of aerosolized PEGylated liposomes in epithelial lining fluids on alveolar surfaces. Drug Deliv Transl Res 2016; 6:565-71. [PMID: 27334278 DOI: 10.1007/s13346-016-0310-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The distribution characteristics of aerosolized PEGylated liposomes in alveolar epithelial lining fluid (ELF) were examined in rats, and the ensuing mechanisms were investigated in the in vitro uptake and protein adsorption experiments. Nonmodified or PEGylated liposomes (particle size 100 nm) were aerosolized into rat lungs. PEGylated liposomes were distributed more sustainably in ELFs than nonmodified liposomes. Furthermore, the uptake of PEGylated liposomes by alveolar macrophages (AMs) was less than that of nonmodified liposomes. In further in vitro uptake experiments, nonmodified and PEGylated liposomes were opsonized with rat ELF components and then added to NR8383 cells as cultured rat AMs. The uptake of opsonized PEGylated liposomes by NR8383 cells was lower than that of opsonized nonmodified liposomes. Moreover, the protein absorption levels in opsonized PEGylated liposomes were lower than those in opsonized nonmodified liposomes. These findings suggest that sustained distributions of aerosolized PEGylated liposomes in ELFs reflect evasion of liposomal opsonization with surfactant proteins and consequent reductions in uptake by AMs. These data indicate the potential of PEGylated liposomes as aerosol-based drug delivery system that target ELF for the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Keita Kaneko
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, 7-15-4-1 Maeda, Teine, Sapporo, Hokkaido, 006-8590, Japan
| | - Kohei Togami
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, 7-15-4-1 Maeda, Teine, Sapporo, Hokkaido, 006-8590, Japan
| | - Eri Yamamoto
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, 7-15-4-1 Maeda, Teine, Sapporo, Hokkaido, 006-8590, Japan
| | - Shujun Wang
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, 7-15-4-1 Maeda, Teine, Sapporo, Hokkaido, 006-8590, Japan
| | - Kazuhiro Morimoto
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, 7-15-4-1 Maeda, Teine, Sapporo, Hokkaido, 006-8590, Japan.,Nihon Pharmaceutical University, Ina, Japan
| | - Shirou Itagaki
- Department of Pharmacy, Hirosaki University School of Medicine and Hospital, 53, Hon-cho, Hirosaki, 036-8563, Japan
| | - Sumio Chono
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, 7-15-4-1 Maeda, Teine, Sapporo, Hokkaido, 006-8590, Japan.
| |
Collapse
|
11
|
Togami K, Miyao A, Miyakoshi K, Kanehira Y, Tada H, Chono S. Efficient delivery to human lung fibroblasts (WI-38) of pirfenidone incorporated into liposomes modified with truncated basic fibroblast growth factor and its inhibitory effect on collagen synthesis in idiopathic pulmonary fibrosis. Biol Pharm Bull 2015; 38:270-6. [PMID: 25747986 DOI: 10.1248/bpb.b14-00659] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present in vitro study, we assessed the delivery of pirfenidone incorporated into liposomes modified with truncated basic fibroblast growth factor (tbFGF) to lung fibroblasts and investigated the anti-fibrotic effect of the drug. The tbFGF peptide, KRTGQYKLC, was used to modify the surface of liposomes (tbFGF-liposomes). We used the thin-layer evaporation method, followed by sonication, to prepare tbFGF-liposomes containing pirfenidone. The cellular accumulation of tbFGF-liposomes was 1.7-fold greater than that of non-modified liposomes in WI-38 cells used as a model of lung fibroblasts. Confocal laser scanning microscopy showed that tbFGF-liposomes were widely localized in WI-38 cells. The inhibitory effects of pirfenidone incorporated into tbFGF-liposomes on transforming growth factor-β1 (TGF-β1)-induced collagen synthesis in WI-38 cells were evaluated by measuring the level of intracellular hydroxyproline, a major component of the protein collagen. Pirfenidone incorporated into tbFGF-liposomes at concentrations of 10, 30, and 100 µM significantly decreased the TGF-β1-induced hydroxyproline content in WI-38 cells. The anti-fibrotic effect of pirfenidone incorporated into tbFGF-liposomes was enhanced compared with that of pirfenidone solution. These results indicate that tbFGF-liposomes are a useful drug delivery system of anti-fibrotic drugs to lung fibroblasts for the treatment of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Kohei Togami
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy
| | | | | | | | | | | |
Collapse
|
12
|
Moreno-Sastre M, Pastor M, Salomon CJ, Esquisabel A, Pedraz JL. Pulmonary drug delivery: a review on nanocarriers for antibacterial chemotherapy. J Antimicrob Chemother 2015. [DOI: 10.1093/jac/dkv192] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
13
|
Klinger-Strobel M, Lautenschläger C, Fischer D, Mainz JG, Bruns T, Tuchscherr L, Pletz MW, Makarewicz O. Aspects of pulmonary drug delivery strategies for infections in cystic fibrosis--where do we stand? Expert Opin Drug Deliv 2015; 12:1351-74. [PMID: 25642831 DOI: 10.1517/17425247.2015.1007949] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Cystic fibrosis (CF) is the most common life-shortening hereditary disease among Caucasians and is associated with severe pulmonary damage because of decreased mucociliary clearance and subsequent chronic bacterial infections. Approximately 90% of CF patients die from lung destruction, promoted by pathogens such as Pseudomonas aeruginosa. Consequently, antibiotic treatment is a cornerstone of CF therapy, preventing chronic infection and reducing bacterial load, exacerbation rates and loss of pulmonary function. Many drugs are administered by inhalation to achieve high pulmonary concentration and to lower systemic side effects. However, pulmonary deposition of inhaled drugs is substantially limited by bronchial obstruction with viscous mucus and restrained by intrapulmonary bacterial biofilms. AREAS COVERED This review describes challenges in the therapy of CF-associated infections by inhaled antibiotics and summarizes the current state of microtechnology and nanotechnology-based pulmonary antibiotic delivery strategies. Recent and ongoing clinical trials as well as experimental approaches for microparticle/nanoparticle-based antibiotics are presented and their advantages and disadvantages are discussed. EXPERT OPINION Rapidly increasing antimicrobial resistance accompanied by the lack of novel antibiotics force targeted and more efficient use of the available drugs. Encapsulation of antimicrobials in nanoparticles or microparticles of organic polymers may have great potential for use in CF therapy.
Collapse
Affiliation(s)
- Mareike Klinger-Strobel
- Jena University Hospital, Center for Infectious Diseases and Infection Control , Erlanger Allee 101, 07740 Jena , Germany +49 3641 9324227 ;
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Rubin BK, Williams RW. Aerosolized Antibiotics for Non-Cystic Fibrosis Bronchiectasis. Respiration 2014; 88:177-84. [DOI: 10.1159/000366000] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
15
|
Muralidharan P, Mallory E, Malapit M, Hayes D, Mansour HM. Inhalable PEGylated Phospholipid Nanocarriers and PEGylated Therapeutics for Respiratory Delivery as Aerosolized Colloidal Dispersions and Dry Powder Inhalers. Pharmaceutics 2014; 6:333-53. [PMID: 24955820 PMCID: PMC4085602 DOI: 10.3390/pharmaceutics6020333] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/25/2014] [Accepted: 06/04/2014] [Indexed: 12/29/2022] Open
Abstract
Nanomedicine is making groundbreaking achievements in drug delivery. The versatility of nanoparticles has given rise to its use in respiratory delivery that includes inhalation aerosol delivery by the nasal route and the pulmonary route. Due to the unique features of the respiratory route, research in exploring the respiratory route for delivery of poorly absorbed and systemically unstable drugs has been increasing. The respiratory route has been successfully used for the delivery of macromolecules like proteins, peptides, and vaccines, and continues to be examined for use with small molecules, DNA, siRNA, and gene therapy. Phospholipid nanocarriers are an attractive drug delivery system for inhalation aerosol delivery in particular. Protecting these phospholipid nanocarriers from pulmonary immune system attack by surface modification by polyethylene glycol (PEG)ylation, enhancing mucopenetration by PEGylation, and sustaining drug release for controlled drug delivery are some of the advantages of PEGylated liposomal and proliposomal inhalation aerosol delivery. This review discusses the advantages of using PEGylated phospholipid nanocarriers and PEGylated therapeutics for respiratory delivery through the nasal and pulmonary routes as inhalation aerosols.
Collapse
Affiliation(s)
- Priya Muralidharan
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, the University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721-0202, USA.
| | - Evan Mallory
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, the University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721-0202, USA.
| | - Monica Malapit
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, the University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721-0202, USA.
| | - Don Hayes
- Lung and Heart-Lung Transplant Programs, Departments of Pediatrics and Internal Medicine, the Ohio State University College of Medicine, Columbus, OH 43205, USA.
| | - Heidi M Mansour
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, the University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721-0202, USA.
| |
Collapse
|
16
|
Morimoto K. [Designs of optimized microbial therapy systems of respiratory infections]. YAKUGAKU ZASSHI 2014; 133:81-92. [PMID: 23292024 DOI: 10.1248/yakushi.12-00256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several respiratory infections are frequently induced by pathogenic microorganisms in lung epithelial lining fluid (ELF) and alveolar macrophages (AM). Then, two studies concerning designs of antimicrobial therapy systems of respiratory infections were carried out; one was the distribution mechanisms of three macrolide and ketolide antibiotics, clarithromycin (CAM), azithromycin (AZM) and telithromycin (TEL) in plasma, ELF and AM, and the other was the efficient drug delivery to AM by pulmonary administration of fluoroquinolone antibiotic, a ciprofloxacin (CPFX) incorporated into liposomes (CPFX-liposome). In the first study, the areas under drug concentration-time curves (AUCs) in ELF following oral administration of three macrolide and ketolide antibiotics to rats were significantly higher than AUCs in plasma, furthermore AUCs in AM significantly higher than AUCs in ELF. The high distribution of these antibiotics to the respiratory infection site is due to the transport from blood to ELF via MDR1 in lung epithelial cells as well as the uptake by AM. These antibiotics were taken up by AM via active transport system and the trapping in organelles. In the second study, drug delivery efficacy of CPFX-liposome to AM was particle size-dependent over the 100-1000 nm and then become constant at over 1000 nm by pulmonary aerosolization to rats. This result indicates that the most effective size is 1000 nm. Furthermore, the drug delivery efficacy of mannosylated CPFX-liposome (particle size: 1000 nm) was highly delivered to AM and antibacterial effects were significantly higher than those of unmodified CPFX-liposome. This review provides useful findings for microbial therapy systems of respiratory infections.
Collapse
Affiliation(s)
- Kazuhiro Morimoto
- Hokkaido Pharmaceutical University School of Pharmacy, Otaru, Hokkaido, Japan.
| |
Collapse
|
17
|
Real-time in vivo imaging of surface-modified liposomes to evaluate their behavior after pulmonary administration. Eur J Pharm Biopharm 2014; 86:115-9. [DOI: 10.1016/j.ejpb.2013.09.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 09/03/2013] [Accepted: 09/09/2013] [Indexed: 11/18/2022]
|
18
|
Breda SA, Guzmán ML, Confalonieri A, González C, Sparo M, Manzo RH, Bruni SS, Olivera ME. Systemic exposure, tissue distribution, and disease evolution of a high solubility ciprofloxacin-aluminum complex in a murine model of septicemia induced by salmonella enterica serotype Enteritidis. Mol Pharm 2013; 10:598-605. [PMID: 23273286 DOI: 10.1021/mp300356a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new pharmaceutical derivative obtained by stoichiometric complexation of ciprofloxacin (CIP) with aluminum (CIP-complex) has been investigated and reported in this study. Such product has high solubility in the gastrointestinal pH range and was successful in the development of optimized formulations while maintaining its antimicrobial potency. The systemic exposure, tissue distribution, and the disease evolution after given CIP-complex were assessed. The systemic exposure and distribution in intestines, lungs, and kidneys after a single intragastric administration of CIP-complex and CIP given alone, used as reference, were performed in Balb-C mice at a dose of 5 mg CIP/kg. For the assessment of the disease evolution assay, mice were infected with a virulent strain of Salmonella enterica serotype Enteritidis and treated intragastrically once or twice daily during 5 consecutive days with solutions of CIP-complex or the reference. Clinical follow up and survival was measured during 15 days post inoculation and health state was scored during this period from 0 to 5. CIP-complex showed a 32% increase in C(max), an earlier T(max), and a smaller AUC(0-12) than the reference. Maximum tissue concentrations (0.5-1 h) were significantly higher in CIP-complex (447% in intestine, 93% in kidney, and 44% in lungs). In the infection model used in this study, survival in CIP-complex versus CIP groups was 40% versus 20% (twice-daily administration) and 30% versus 0% (once-daily administration). Health state of the survivors of CIP-complex group (5/5) was higher than CIP group (3/5). The greater effectiveness of CIP-complex is attributed to the higher levels of CIP in the intestine. Our results supported the fact that CIP-complex is a promising candidate to develop dose-efficient formulations of CIP for oral administration.
Collapse
Affiliation(s)
- Susana Andrea Breda
- Departamento de Farmacia, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba , Haya de la Torre y Medina Allende, Ciudad Universitaria (5000), Córdoba, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang S, Ye T, Yang B, Yi X, Yao H. 7-Ethyl-10-hydroxycamptothecin proliposomes with a novel preparation method: optimized formulation, characterization and in-vivo evaluation. Drug Dev Ind Pharm 2012; 39:393-401. [DOI: 10.3109/03639045.2012.683441] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Rodvold KA, George JM, Yoo L. Penetration of anti-infective agents into pulmonary epithelial lining fluid: focus on antibacterial agents. Clin Pharmacokinet 2012; 50:637-64. [PMID: 21895037 DOI: 10.2165/11594090-000000000-00000] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The exposure-response relationship of anti-infective agents at the site of infection is currently being re-examined. Epithelial lining fluid (ELF) has been suggested as the site (compartment) of antimicrobial activity against lung infections caused by extracellular pathogens. There have been an extensive number of studies conducted during the past 20 years to determine drug penetration into ELF and to compare plasma and ELF concentrations of anti-infective agents. The majority of these studies estimated ELF drug concentrations by the method of urea dilution and involved either healthy adult subjects or patients undergoing diagnostic bronchoscopy. Antibacterial agents such as macrolides, ketolides, newer fluoroquinolones and oxazolidinones have ELF to plasma concentration ratios of >1. In comparison, β-lactams, aminoglycosides and glycopeptides have ELF to plasma concentration ratios of ≤1. Potential explanations (e.g. drug transporters, overestimation of the ELF volume, lysis of cells) for why these differences in ELF penetration occur among antibacterial classes need further investigation. The relationship between ELF concentrations and clinical outcomes has been under-studied. In vitro pharmacodynamic models, using simulated ELF and plasma concentrations, have been used to examine the eradication rates of resistant and susceptible pathogens and to explain why selected anti-infective agents (e.g. those with ELF to plasma concentration ratios of >1) are less likely to be associated with clinical treatment failures. Population pharmacokinetic modelling and Monte Carlo simulations have recently been used and permit ELF and plasma concentrations to be evaluated with regard to achievement of target attainment rates. These mathematical modelling techniques have also allowed further examination of drug doses and differences in the time courses of ELF and plasma concentrations as potential explanations for clinical and microbiological effects seen in clinical trials. Further studies are warranted in patients with lower respiratory tract infections to confirm and explore the relationships between ELF concentrations, clinical and microbiological outcomes, and pharmacodynamic parameters.
Collapse
|