1
|
Wang D, Li X, Yao H, Liu X, Gao Y, Cong H, Yu B, Shen Y. Hydrophobic modification of polysaccharides and the construction and properties of their micelles: a review of applications in the field of biomedicine. Sci China Chem 2024; 67:1881-1903. [DOI: 10.1007/s11426-023-1916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/04/2024] [Indexed: 01/06/2025]
|
2
|
Lamch Ł, Wilk KA, Dékány I, Deák Á, Hornok V, Janovák L. Rational Mitomycin Nanocarriers Based on Hydrophobically Functionalized Polyelectrolytes and Poly(lactide- co-glycolide). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5404-5417. [PMID: 35442685 PMCID: PMC9097536 DOI: 10.1021/acs.langmuir.1c03360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Encapsulation of hydrophilic and amphiphilic drugs in appropriate colloidal carrier systems for sustained release is an emerging problem. In general, hydrophobic bioactive substances tend to accumulate in water-immiscible polymeric domains, and the release process is controlled by their low aqueous solubility and limited diffusion from the nanocarrier matrix. Conversely, hydrophilic/amphiphilic drugs are typically water-soluble and insoluble in numerous polymers. Therefore, a core-shell approach─nanocarriers comprising an internal core and external shell microenvironments of different properties─can be exploited for hydrophilic/amphiphilic drugs. To produce colloidally stable poly(lactic-co-glycolic) (PLGA) nanoparticles for mitomycin C (MMC) delivery and controlled release, a unique class of amphiphilic polymers─hydrophobically functionalized polyelectrolytes─were utilized as shell-forming materials, comprising both stabilization via electrostatic repulsive forces and anchoring to the core via hydrophobic interactions. Undoubtedly, the use of these polymeric building blocks for the core-shell approach contributes to the enhancement of the payload chemical stability and sustained release profiles. The studied nanoparticles were prepared via nanoprecipitation of the PLGA polymer and were dissolved in acetone as a good solvent and in an aqueous solution containing hydrophobically functionalized poly(4-styrenesulfonic-co-maleic acid) and poly(acrylic acid) of differing hydrophilic-lipophilic balance values. The type of the hydrophobically functionalized polyelectrolyte (HF-PE) was crucial for the chemical stability of the payload─derivatives of poly(acrylic acid) were found to cause very rapid degradation (hydrolysis) of MMC, in contrast to poly(4-styrenesulfonic-co-maleic acid). The present contribution allowed us to gain crucial information about novel colloidal nanocarrier systems for MMC delivery, especially in the fields of optimal HF-PE concentrations, appropriate core and shell building materials, and the colloidal and chemical stability of the system.
Collapse
Affiliation(s)
- Łukasz Lamch
- Department
of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, Wrocław 50-370, Poland
| | - Kazimiera A. Wilk
- Department
of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, Wrocław 50-370, Poland
| | - Imre Dékány
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Ágota Deák
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Viktória Hornok
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - László Janovák
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
3
|
Estrogenic activity and toxicity screening of Damnacanthal nanospheres and their metabolites assessed using an in vitro bioluminescent yeast assay. Toxicol Rep 2022; 9:1666-1673. [DOI: 10.1016/j.toxrep.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/19/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022] Open
|
4
|
Chong WM, Lim V, Abd Kadir E. Hydrophobically modified PEGylated glycol chitosan nanoparticles: synthesis, characterisation and anticancer properties. NEW J CHEM 2021; 45:11359-11370. [DOI: 10.1039/d1nj01710a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
A novel palmitoylated glycol chitosan polymer grafted with PEG (PGC-PEG) was successfully developed to form amphiphilic micelles in aqueous solution.
Collapse
Affiliation(s)
- Wai Mun Chong
- Integrative Medicine Cluster
- Advanced Medical and Dental Institute
- Universiti Sains Malaysia
- 13200 Kepala Batas
- Malaysia
| | - Vuanghao Lim
- Integrative Medicine Cluster
- Advanced Medical and Dental Institute
- Universiti Sains Malaysia
- 13200 Kepala Batas
- Malaysia
| | - Erazuliana Abd Kadir
- Integrative Medicine Cluster
- Advanced Medical and Dental Institute
- Universiti Sains Malaysia
- 13200 Kepala Batas
- Malaysia
| |
Collapse
|
5
|
Dhua M, Maiti S, Sen KK. Modified karaya gum colloidal particles for the management of systemic hypertension. Int J Biol Macromol 2020; 164:1889-1897. [DOI: 10.1016/j.ijbiomac.2020.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/23/2020] [Accepted: 08/02/2020] [Indexed: 10/23/2022]
|
6
|
Xu XL, Shu GF, Wang XJ, Qi J, Jin FY, Shen QY, Ying XY, Ji JS, Du YZ. Sialic acid-modified chitosan oligosaccharide-based biphasic calcium phosphate promote synergetic bone formation in rheumatoid arthritis therapy. J Control Release 2020; 323:578-590. [PMID: 32376462 DOI: 10.1016/j.jconrel.2020.04.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/30/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Therapeutic goals for rheumatoid arthritis (RA) consist of inhibiting the inflammatory response and repairing the damaged bone/cartilage. Tissue engineering could achieve both goals, however, it was hindered due to the lack of biologically relevant tissue complexity, limitation in covering the entire polyarthritis lesions and requirement of extra surgical implantation. Integrating nanotechnologies into clinically sized implants represents a major opportunity to overcome these problems. Herein, we designed a sialic acid (SA)-modified chitosan oligosaccharide-based biphasic calcium phosphate (BCP), a biomimetic nanoplatform that could load with methotrexate. We found that SA modification could not only improve the accumulation of the designed organic-inorganic nanoplatform in arthritic paws (34.38% higher than those without SA modification at 48 h), but also cooperate with BCP to exert synergetic mineralization of calcium phosphate, allowing more osteoblasts to attach, proliferate and differentiate. The more differentiated osteoblasts produced 4.46-fold type I collagen and 2.60-fold osteoprotegerin compared to the control group. Besides, the disassembled nanorods released chitosan oligosaccharide-based micelles, revealing a cartilage-protective effect by reducing the loss of glycosaminoglycan. All these improvements contributed to the light inflammatory response and reduced destruction on cartilage/bone. The findings provide a novel strategy for RA therapy via nanometer-scale dimension mimicking the natural tissues.
Collapse
Affiliation(s)
- Xiao-Ling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Gao-Feng Shu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui 323000, PR China
| | - Xiao-Juan Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jing Qi
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Fei-Yang Jin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Qi-Ying Shen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiao-Ying Ying
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Jian-Song Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui 323000, PR China.
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
7
|
Kamari A, Yusoff SNM. N-octyl chitosan derivatives as amphiphilic carrier agents for herbicide formulations. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AbstractThis study investigates the potential of N-octyl chitosan derivatives, namely N-octyl-O-sulfate chitosan (NOOSC), N-octyl-N-succinyl chitosan (NONSC) and N-octyl-O-glycol chitosan (NOOGC) as amphiphilic carrier agents for atrazine in water-insoluble herbicide formulations. The N-octyl chitosan derivatives were characterised using several analytical instruments such as Fourier Transform Infrared (FTIR) Spectrometer, CHNS-O Elemental Analyser (CHNS-O), Transmission Electron Microscope (TEM), Thermogravimetric Analyser (TGA), Differential Scanning Calorimeter (DSC) and Fluorescence Spectrometer. The encapsulation of atrazine by N-octyl chitosan derivatives was studied using a High Performance Liquid Chromatography (HPLC). The FTIR spectra of N-octyl chitosan derivatives confirmed the presence of hydrophobic and hydrophilic groups on chitosan backbone. TEM images revealed that N-octyl chitosan derivatives have formed self-aggregates with a spherical shape. The CMC values for N-octyl chitosan derivatives were between 0.06 and 0.09 mg/mL. The encapsulation efficiency (EE) values for amphiphilic chitosan were greater than 90%. The release profiles showed different release behaviour of pure herbicide in solution as compared to atrazine-loaded N-octyl chitosan derivatives. Results suggest that the chitosan derivatives offer promising characteristics that enable them to act as effective carrier agents for atrazine. In conclusion, the application of N-octyl chitosan derivatives could reduce the use of organic solvents in herbicide formulations by 37.5%.
Collapse
Affiliation(s)
- Azlan Kamari
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia
| | - Siti Najiah Mohd Yusoff
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia
| |
Collapse
|
8
|
Shi NQ, Wang SR, Zhang Y, Huo JS, Wang LN, Cai JH, Li ZQ, Xiang B, Qi XR. Hot melt extrusion technology for improved dissolution, solubility and “spring-parachute” processes of amorphous self-micellizing solid dispersions containing BCS II drugs indomethacin and fenofibrate: Profiles and mechanisms. Eur J Pharm Sci 2019; 130:78-90. [DOI: 10.1016/j.ejps.2019.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/19/2019] [Accepted: 01/20/2019] [Indexed: 12/20/2022]
|
9
|
Yusoff SNM, Kamari A. N-deoxycholic acid-O-glycol chitosan as a potential carrier agent for botanical pesticide rotenone. J Appl Polym Sci 2018. [DOI: 10.1002/app.46855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- S. N. M. Yusoff
- Department of Chemistry, Faculty Science and Mathematics; Universiti Pendidikan Sultan Idris 35900; Tanjong Malim Malaysia
| | - A. Kamari
- Department of Chemistry, Faculty Science and Mathematics; Universiti Pendidikan Sultan Idris 35900; Tanjong Malim Malaysia
| |
Collapse
|
10
|
Sukamporn P, Baek SJ, Gritsanapan W, Chirachanchai S, Nualsanit T, Rojanapanthu P. Self-assembled nanomicelles of damnacanthal-loaded amphiphilic modified chitosan: Preparation, characterization and cytotoxicity study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1068-1077. [DOI: 10.1016/j.msec.2017.03.263] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/23/2017] [Accepted: 03/26/2017] [Indexed: 01/22/2023]
|
11
|
Huo M, Liu Y, Wang L, Yin T, Qin C, Xiao Y, Yin L, Liu J, Zhou J. Redox-Sensitive Micelles Based on O,N-Hydroxyethyl Chitosan-Octylamine Conjugates for Triggered Intracellular Delivery of Paclitaxel. Mol Pharm 2016; 13:1750-62. [PMID: 27100204 DOI: 10.1021/acs.molpharmaceut.5b00696] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A redox-sensitive micellar system constructed from an O,N-hydroxyethyl chitosan-octylamine (HECS-ss-OA) conjugate with disulfide linkages between the hydrophobic alkyl chains and hydrophilic chitosan backbone was synthesized for triggered intracellular delivery of hydrophobic paclitaxel (PTX). In aqueous environments, conjugates formed micelles with high PTX loading (>30%). Mechanistically, the sensitivity of HECS-ss-OA micelles to reducing environments was investigated using the parameters of in vitro release and particle size. Intracellular release of nile red fluorescence alongside cytotoxicity studies further confirmed the potency of redox-sensitive micelles for intracellular drug delivery compared with redox-insensitive micelles. Additionally, an in vivo study confirmed the efficacy of PTX-loaded micelles in tumor-bearing mice with superior antitumor efficacy and diminished systemic toxicity when compared with the redox-insensitive micelles and a PTX solution. These results demonstrate the potential of redox-sensitive HECS-ss-OA micelles for intracellular trafficking of lipophilic anticancer drugs.
Collapse
Affiliation(s)
- Meirong Huo
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| | - Yao Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| | - Tingjie Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| | - Chen Qin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| | - Yanyu Xiao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| | - Lifang Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| | - Jiyong Liu
- Department of Pharmacy, Changhai Hospital, The Second Military Medical University , Shanghai 200433, China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, China
| |
Collapse
|