1
|
De Grave L, Di Meo C, Gréant C, Van Durme B, Gérard M, La Gatta A, Schiraldi C, Thorrez L, Bernaerts KV, Van Vlierberghe S. Photo-crosslinkable Poly(aspartic acid) for Light-based additive Manufacturing: Chain-growth versus Step-growth crosslinking. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
2
|
Gyarmati B, Dargó G, Aron Szilagyi B, Vincze A, Facskó R, Budai-Szűcs M, Kiss EL, Szente L, Szilagyi A, Balogh GT. Synthesis, complex formation and corneal permeation of cyclodextrin-modified, thiolated poly(aspartic acid) as self-gelling formulation of dexamethasone. Eur J Pharm Biopharm 2022; 174:1-9. [PMID: 35341942 DOI: 10.1016/j.ejpb.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/09/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022]
Abstract
The present study aimed at developing a potential in situ gellable dexamethasone (DXM) eye drop. Poly(aspartic acid) (PASP) derivatives were synthesized with dual functionality to improve the solubility of DXM, and to achieve in situ gelation. First, amine-modified β-cyclodextrin (CD) was attached to polysuccinimide (PSI), second, thiol functionalities were added by the reaction of cysteamine and succinimide rings. Finally, the PSI derivatives were hydrolysed to the corresponding PASP derivatives to get water-soluble polymers. Phase-solubility studies confirmed the complexation ability of CD-containing PASP derivatives. In situ gelation and the effect of the CD immobilization on this behaviour were characterized by rheological measurements. The solubilizing effect of CD was confirmed by kinetic solubility measurements, whereas in vitro corneal permeability assay (corneal-PAMPA) measurements were performed to determine in vitro permeability and flux values. The effect of the PASP derivatives on permeation strongly depended on chemical composition and polymer concentration.
Collapse
Affiliation(s)
- Benjámin Gyarmati
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Gergő Dargó
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rakpart 3., H-1111 Budapest, Hungary
| | - Barnabas Aron Szilagyi
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Anna Vincze
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rakpart 3., H-1111 Budapest, Hungary
| | - Réka Facskó
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rakpart 3., H-1111 Budapest, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös utca 6., H-6720 Szeged, Hungary
| | - Eszter L Kiss
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös utca 6., H-6720 Szeged, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R. and D. Laboratory, Ltd, H-1070 Budapest, Illatos út 7. Hungary
| | - Andras Szilagyi
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| | - György T Balogh
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rakpart 3., H-1111 Budapest, Hungary; Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös utca 6., H-6720 Szeged, Hungary.
| |
Collapse
|
3
|
Adelnia H, Tran HDN, Little PJ, Blakey I, Ta HT. Poly(aspartic acid) in Biomedical Applications: From Polymerization, Modification, Properties, Degradation, and Biocompatibility to Applications. ACS Biomater Sci Eng 2021; 7:2083-2105. [PMID: 33797239 DOI: 10.1021/acsbiomaterials.1c00150] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Poly(aspartic acid) (PASP) is an anionic polypeptide that is a highly versatile, biocompatible, and biodegradable polymer that fulfils key requirements for use in a wide variety of biomedical applications. The derivatives of PASP can be readily tailored via the amine-reactive precursor, poly(succinimide) (PSI), which opens up a large window of opportunity for the design and development of novel biomaterials. PASP also has a strong affinity with calcium ions, resulting in complexation, which has been exploited for bone targeting and biomineralization. In addition, recent studies have further verified the biocompatibility and biodegradability of PASP-based polymers, which is attributed to their protein-like structure. In light of growing interest in PASP and its derivatives, this paper presents a comprehensive review on their synthesis, characterization, modification, biodegradation, biocompatibility, and applications in biomedical areas.
Collapse
Affiliation(s)
- Hossein Adelnia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia.,School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4012, Australia
| | - Huong D N Tran
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4012, Australia.,Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Queensland 4575, Australia
| | - Idriss Blakey
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland 4067, Australia
| | - Hang T Ta
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia.,School of Environment and Science, Griffith University, Nathan, Queensland 411, Australia
| |
Collapse
|
4
|
Augustine R, Kalva N, Kim HA, Zhang Y, Kim I. pH-Responsive Polypeptide-Based Smart Nano-Carriers for Theranostic Applications. Molecules 2019; 24:E2961. [PMID: 31443287 PMCID: PMC6719039 DOI: 10.3390/molecules24162961] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
Smart nano-carriers have attained great significance in the biomedical field due to their versatile and interesting designs with different functionalities. The initial stages of the development of nanocarriers mainly focused on the guest loading efficiency, biocompatibility of the host and the circulation time. Later the requirements of less side effects with more efficacy arose by attributing targetability and stimuli-responsive characteristics to nano-carriers along with their bio- compatibility. Researchers are utilizing many stimuli-responsive polymers for the better release of the guest molecules at the targeted sites. Among these, pH-triggered release achieves increasing importance because of the pH variation in different organ and cancer cells of acidic pH. This specific feature is utilized to release the guest molecules more precisely in the targeted site by designing polymers having specific functionality with the pH dependent morphology change characteristics. In this review, we mainly concert on the pH-responsive polypeptides and some interesting nano-carrier designs for the effective theranostic applications. Also, emphasis is made on pharmaceutical application of the different nano-carriers with respect to the organ, tissue and cellular level pH environment.
Collapse
Affiliation(s)
- Rimesh Augustine
- BK 21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Korea
| | - Nagendra Kalva
- BK 21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Korea
| | - Ho An Kim
- BK 21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Korea
| | - Yu Zhang
- BK 21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Korea
| | - Il Kim
- BK 21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Korea.
| |
Collapse
|
5
|
Mutlu Z, Shams Es‐haghi S, Cakmak M. Recent Trends in Advanced Contact Lenses. Adv Healthc Mater 2019; 8:e1801390. [PMID: 30938941 DOI: 10.1002/adhm.201801390] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/28/2019] [Indexed: 12/28/2022]
Abstract
Exploiting contact lenses for ocular drug delivery is an emerging field in the area of biomedical engineering and advanced healthcare materials. Despite all the research conducted in this area, still, new technologies are in their early stages of the development, and more work must be done in terms of clinical trials to commercialize these technologies. A great challenge in using contact lenses for drug delivery is to achieve a prolonged drug release profile within the therapeutic range for various eye-related problems and diseases. In general, desired release kinetics to avoid the initial burst release is the zero-order kinetics within the therapeutic range. This review highlights the new technologies developed to achieve efficient and extended drug delivery. It also provides an overview of the materials and methods for fabrication of contact lenses and their mechanical and optical properties.
Collapse
Affiliation(s)
- Zeynep Mutlu
- Birck Nanotechnology CenterPurdue University West Lafayette IN 47907‐2057 USA
- School of Materials EngineeringPurdue University West Lafayette IN 47907‐2045 USA
| | - Siamak Shams Es‐haghi
- Birck Nanotechnology CenterPurdue University West Lafayette IN 47907‐2057 USA
- School of Materials EngineeringPurdue University West Lafayette IN 47907‐2045 USA
| | - Mukerrem Cakmak
- Birck Nanotechnology CenterPurdue University West Lafayette IN 47907‐2057 USA
- School of Materials EngineeringPurdue University West Lafayette IN 47907‐2045 USA
- School of Mechanical EngineeringPurdue University West Lafayette IN 47907‐2088 USA
| |
Collapse
|
6
|
Szilágyi BÁ, Gyarmati B, Horvát G, Laki Á, Budai-Szűcs M, Csányi E, Sandri G, Bonferoni MC, Szilágyi A. The effect of thiol content on the gelation and mucoadhesion of thiolated poly(aspartic acid). POLYM INT 2017. [DOI: 10.1002/pi.5411] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Barnabás Áron Szilágyi
- Soft Matters Group, Department of Physical Chemistry and Materials Science; Budapest University of Technology and Economics; Budapest Hungary
| | - Benjámin Gyarmati
- Soft Matters Group, Department of Physical Chemistry and Materials Science; Budapest University of Technology and Economics; Budapest Hungary
| | - Gabriella Horvát
- Institute of Pharmaceutical Technology and Regulatory Affairs; University of Szeged; Szeged Hungary
| | - Ádám Laki
- Soft Matters Group, Department of Physical Chemistry and Materials Science; Budapest University of Technology and Economics; Budapest Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs; University of Szeged; Szeged Hungary
| | - Erzsébet Csányi
- Institute of Pharmaceutical Technology and Regulatory Affairs; University of Szeged; Szeged Hungary
| | | | | | - András Szilágyi
- Soft Matters Group, Department of Physical Chemistry and Materials Science; Budapest University of Technology and Economics; Budapest Hungary
| |
Collapse
|
7
|
Cationic Thiolated Poly(aspartamide) Polymer as a Potential Excipient for Artificial Tear Formulations. J Ophthalmol 2016; 2016:2647264. [PMID: 27313866 PMCID: PMC4893575 DOI: 10.1155/2016/2647264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/15/2016] [Accepted: 04/26/2016] [Indexed: 11/17/2022] Open
Abstract
Dry eye disease is a relatively common ocular problem, which causes eye discomfort and visual disorders leading to a decrease in the quality of life. The aim of this study was to find a possible excipient for eye drop formulations, which is able to stabilize the tear film. A cationic thiolated polyaspartamide polymer, poly[(N-mercaptoethylaspartamide)-co-(N-(N′,N′-dimethylaminoethyl)aspartamide)] (ThioPASP-DME), was used as a potential vehicle. Besides satisfying the basic requirements, the chemical structure of ThioPASP-DME is similar to those of ocular mucins as it is a protein-like polymer bearing a considerable number of thiol groups. The solution of the polymer is therefore able to mimic the physiological properties of the mucins and it can interact with the mucus layer via disulphide bond formation. The resultant mucoadhesion provides a prolonged residence time and ensures protective effect for the corneal/conjunctival epithelium. ThioPASP-DME also has an antioxidant effect due to the presence of the thiol groups. The applicability of ThioPASP-DME as a potential excipient in eye drops was determined by means of ocular compatibility tests and through examinations of the interactions with the mucosal surface. The results indicate that ThioPASP-DME can serve as a potential eye drop excipient for the therapy of dry eye disease.
Collapse
|