1
|
Abdul Hafizz AMH, Mohd Mokthar N, Md Zin RR, P. Mongan N, Mamat @ Yusof MN, Kampan NC, Chew KT, Shafiee MN. Insulin-like Growth Factor 1 (IGF1) and Its Isoforms: Insights into the Mechanisms of Endometrial Cancer. Cancers (Basel) 2025; 17:129. [PMID: 39796756 PMCID: PMC11720045 DOI: 10.3390/cancers17010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/25/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Endometrial cancer (EC) is a common gynaecological malignancy associated with metabolic dysfunctions such as obesity, diabetes and insulin resistance, as well as hormonal imbalances, particularly involving oestrogen and progesterone. These factors disrupt normal cellular metabolism, heightening the risk of developing endometrioid EC (EEC), the most prevalent subtype of EC. The insulin-like growth factor-1 (IGF1) pathway, a key regulator of growth, metabolism, and organ function, is implicated in EC progression. Recent research highlights the distinct roles of IGF1 isoforms, including IGF1-Ea, IGF1-Eb, and IGF1-Ec, in promoting tumour growth, metastasis, and hormone signalling interactions, particularly with oestrogen. This review examines the function and clinical significance of IGF-1 isoforms, emphasising their mechanisms in gynaecological physiology and their contributions to EC pathogenesis. Evidence from other cancers further underscores the relevance of IGF1 isoforms in driving tumour behaviours, offering valuable insights into their potential as biomarkers and therapeutic targets. Understanding these mechanisms provides opportunities for novel approaches to the prevention, diagnosis, and treatment of EC, improving patient outcomes and advancing the broader field of hormone-driven cancers.
Collapse
Affiliation(s)
| | - Norfilza Mohd Mokthar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Reena Rahayu Md Zin
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nigel P. Mongan
- Biodiscovery Institute, Faculty of Medicine and Health Sciences, The University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Mohd Nazzary Mamat @ Yusof
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nirmala Chandralega Kampan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Kah Teik Chew
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mohamad Nasir Shafiee
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
2
|
Khatun M, Modhukur V, Piltonen TT, Tapanainen JS, Salumets A. Stanniocalcin Protein Expression in Female Reproductive Organs: Literature Review and Public Cancer Database Analysis. Endocrinology 2024; 165:bqae110. [PMID: 39186548 PMCID: PMC11398916 DOI: 10.1210/endocr/bqae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/05/2024] [Accepted: 08/24/2024] [Indexed: 08/28/2024]
Abstract
Stanniocalcin (STC) 1 and 2 serve as antihyperglycemic polypeptide hormones with critical roles in regulating calcium and phosphate homeostasis. They additionally function as paracrine and/or autocrine factors involved in numerous physiological processes, including female reproduction. STC1 and STC2 contribute to the pathophysiology of several diseases, including female infertility- and pregnancy-associated conditions, and even tumorigenesis of reproductive organs. This comprehensive review highlights the dynamic expression patterns and potential dysregulation of STC1 and STC2, restricted to female fertility, and infertility- and pregnancy-associated diseases and conditions, such as endometriosis, polycystic ovary syndrome (PCOS), abnormal uterine bleeding, uterine polyps, and pregnancy complications, like impaired decidualization, preeclampsia, and preterm labor. Furthermore, the review elucidates the role of dysregulated STC in the progression of cancers of the reproductive system, including endometrial, cervical, and ovarian cancers. Additionally, the review evaluates the expression patterns and prognostic significance of STC in gynecological cancers by utilizing existing public datasets from The Cancer Genome Atlas to help decipher the multifaceted roles of these pleiotropic hormones in disease progression. Understanding the intricate mechanisms by which STC proteins influence all these reviewed conditions could lead to the development of targeted diagnostic and therapeutic strategies in the context of female reproductive health and oncology.
Collapse
Affiliation(s)
- Masuma Khatun
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Vijayachitra Modhukur
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
- Competence Centre on Health Technologies, 50411 Tartu, Estonia
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, 90220 Oulu, Finland
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, 00290 Helsinki, Finland
- Department of Obstetrics and Gynaecology, HFR—Cantonal Hospital of Fribourg and University of Fribourg, 79085 Fribourg, Switzerland
| | - Andres Salumets
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
- Competence Centre on Health Technologies, 50411 Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, 14152 Huddinge, Stockholm, Sweden
| |
Collapse
|
3
|
Papadogkonas G, Papamatheakis DA, Spilianakis C. 3D Genome Organization as an Epigenetic Determinant of Transcription Regulation in T Cells. Front Immunol 2022; 13:921375. [PMID: 35812421 PMCID: PMC9257000 DOI: 10.3389/fimmu.2022.921375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
In the heart of innate and adaptive immunity lies the proper spatiotemporal development of several immune cell lineages. Multiple studies have highlighted the necessity of epigenetic and transcriptional regulation in cell lineage specification. This mode of regulation is mediated by transcription factors and chromatin remodelers, controlling developmentally essential gene sets. The core of transcription and epigenetic regulation is formulated by different epigenetic modifications determining gene expression. Apart from “classic” epigenetic modifications, 3D chromatin architecture is also purported to exert fundamental roles in gene regulation. Chromatin conformation both facilitates cell-specific factor binding at specified regions and is in turn modified as such, acting synergistically. The interplay between global and tissue-specific protein factors dictates the epigenetic landscape of T and innate lymphoid cell (ILC) lineages. The expression of global genome organizers such as CTCF, YY1, and the cohesin complexes, closely cooperate with tissue-specific factors to exert cell type-specific gene regulation. Special AT-rich binding protein 1 (SATB1) is an important tissue-specific genome organizer and regulator controlling both long- and short-range chromatin interactions. Recent indications point to SATB1’s cooperation with the aforementioned factors, linking global to tissue-specific gene regulation. Changes in 3D genome organization are of vital importance for proper cell development and function, while disruption of this mechanism can lead to severe immuno-developmental defects. Newly emerging data have inextricably linked chromatin architecture deregulation to tissue-specific pathophysiological phenotypes. The combination of these findings may shed light on the mechanisms behind pathological conditions.
Collapse
Affiliation(s)
- George Papadogkonas
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Dionysios-Alexandros Papamatheakis
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Charalampos Spilianakis
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
- *Correspondence: Charalampos Spilianakis,
| |
Collapse
|
4
|
Identification and External Validation of a Transcription Factor-Related Prognostic Signature in Pediatric Neuroblastoma. JOURNAL OF ONCOLOGY 2022; 2021:1370451. [PMID: 34992653 PMCID: PMC8727167 DOI: 10.1155/2021/1370451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 11/19/2022]
Abstract
Background Neuroblastoma is a common solid tumor originating from the sympathetic nervous system, commonly found in children, and it is one of the leading causes of tumor-related deaths in children. In addition to pathological features, molecular-level features, such as how much gene expression is present and the mutational profile, may provide useful information for the precise treatment of neuroblastoma. Transcription factors (TFs) play an important regulatory role in all aspects of cellular life activities. But there are currently no studies on transcription factor-based biomarkers of neuroblastoma prognosis, and this study is much needed. Methods We downloaded RNA transcriptome data and clinical data from the TARGET database to construct a prognostic model. The prognostic model was constructed by using univariate Cox analysis, LASSO, and multivariate Cox regression. We divided the patients into low-risk and high-risk groups using the median value of the risk score as the cut-off. Then, we validated the prognostic model with the dataset GSE49710. Results We constructed a prognostic model consisting of eight genes (SATB1, ZNF564, SOX14, EN1, IKZF2, SLC2A4RG, FOXJ2, and ZNF521). Patients in the high-risk group had a lower survival rate than those in the low-risk group. The area under the 3-year ROC curve of the model reached 0.825, suggesting a good predictive efficacy. We performed target gene prediction for the eight transcription factors in the model using six online databases and found that TUT1 may be a target gene for transcription factor EN1 and is associated with immune infiltration. Conclusion This prognostic model consisting of eight transcription factor-associated genes demonstrated reliable predictive efficacy. This prediction model may provide new potential targets for the treatment of neuroblastoma and personalized monitoring of neuroblastoma patients with high and low risk.
Collapse
|
5
|
Khatun M, Urpilainen E, Ahtikoski A, Arffman RK, Pasanen A, Puistola U, Tapanainen JS, Andersson LC, Butzow R, Loukovaara M, Piltonen TT. Low Expression of Stanniocalcin 1 (STC-1) Protein Is Associated With Poor Clinicopathologic Features of Endometrial Cancer. Pathol Oncol Res 2021; 27:1609936. [PMID: 34650342 PMCID: PMC8505533 DOI: 10.3389/pore.2021.1609936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022]
Abstract
Stanniocalcin-1 (STC-1) is a glycoprotein hormone involved in diverse biological processes, including regulation of calcium phosphate homeostasis, cell proliferation, apoptosis, inflammation, oxidative stress responses, and cancer development. The role of STC-1 in endometrial cancer (EC) is yet to be elucidated. In this study, we investigated the protein expression pattern of STC-1 in a tissue microarray (TMA) cohort of hysterectomy specimens from 832 patients with EC. We then evaluated the prognostic value of STC-1 expression regarding the clinicopathologic features and patients survival over a period of 140 months. Our results revealed that in EC tissue samples, STC-1 is mainly localized in the endometrial epithelium, although some expression was also observed in the stroma. Decreased STC-1 expression was associated with factors relating to a worse prognosis, such as grade 3 endometrioid tumors (p = 0.030), deep myometrial invasion (p = 0.003), lymphovascular space invasion (p = 0.050), and large tumor size (p = 0.001). Moreover, STC-1 expression was decreased in tumors obtained from obese women (p = 0.014) and in women with diabetes mellitus type 2 (DMT2; p = 0.001). Interestingly, the data also showed an association between DNA mismatch repair (MMR) deficiency and weak STC-1 expression, specifically in the endometrial epithelium (p = 0.048). No association was observed between STC-1 expression and disease-specific survival. As STC-1 expression was particularly low in cases with obesity and DMT2 in the TMA cohort, we also evaluated the correlation between metformin use and STC-1 expression in an additional EC cohort that only included women with DMT2 (n = 111). The analysis showed no difference in STC-1 expression in either the epithelium or the stroma in women undergoing metformin therapy compared to metformin non-users. Overall, our data may suggest a favorable role for STC-1 in EC behavior; however, further studies are required to elucidate the detailed mechanism and possible applications to cancer treatment.
Collapse
Affiliation(s)
- Masuma Khatun
- Department of Obstetrics and Gynaecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Elina Urpilainen
- Department of Obstetrics and Gynaecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Anne Ahtikoski
- Department of Pathology, Oulu University Hospital, University of Oulu, Oulu, Finland.,Department of Pathology, Turku University Hospital, Turku, Finland
| | - Riikka K Arffman
- Department of Obstetrics and Gynaecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Annukka Pasanen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Ulla Puistola
- Department of Obstetrics and Gynaecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Juha S Tapanainen
- Department of Obstetrics and Gynaecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland.,Department of Obstetrics and Gynaecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Leif C Andersson
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Ralf Butzow
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Mikko Loukovaara
- Department of Obstetrics and Gynaecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Terhi T Piltonen
- Department of Obstetrics and Gynaecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| |
Collapse
|
6
|
Bradfield A, Button L, Drury J, Green DC, Hill CJ, Hapangama DK. Investigating the Role of Telomere and Telomerase Associated Genes and Proteins in Endometrial Cancer. Methods Protoc 2020; 3:E63. [PMID: 32899298 PMCID: PMC7565490 DOI: 10.3390/mps3030063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 12/16/2022] Open
Abstract
Endometrial cancer (EC) is the commonest gynaecological malignancy. Current prognostic markers are inadequate to accurately predict patient survival, necessitating novel prognostic markers, to improve treatment strategies. Telomerase has a unique role within the endometrium, whilst aberrant telomerase activity is a hallmark of many cancers. The aim of the current in silico study is to investigate the role of telomere and telomerase associated genes and proteins (TTAGPs) in EC to identify potential prognostic markers and therapeutic targets. Analysis of RNA-seq data from The Cancer Genome Atlas identified differentially expressed genes (DEGs) in EC (568 TTAGPs out of 3467) and ascertained DEGs associated with histological subtypes, higher grade endometrioid tumours and late stage EC. Functional analysis demonstrated that DEGs were predominantly involved in cell cycle regulation, while the survival analysis identified 69 DEGs associated with prognosis. The protein-protein interaction network constructed facilitated the identification of hub genes, enriched transcription factor binding sites and drugs that may target the network. Thus, our in silico methods distinguished many critical genes associated with telomere maintenance that were previously unknown to contribute to EC carcinogenesis and prognosis, including NOP56, WFS1, ANAPC4 and TUBB4A. Probing the prognostic and therapeutic utility of these novel TTAGP markers will form an exciting basis for future research.
Collapse
Affiliation(s)
- Alice Bradfield
- Department of Women’s and Children’s Health, University of Liverpool, Crown St, Liverpool L69 7ZX, UK; (A.B.); (J.D.); (C.J.H.)
| | - Lucy Button
- Faculty of Health and Life Sciences, University of Liverpool, Brownlow Hill, Liverpool L69 7ZX, UK;
| | - Josephine Drury
- Department of Women’s and Children’s Health, University of Liverpool, Crown St, Liverpool L69 7ZX, UK; (A.B.); (J.D.); (C.J.H.)
| | - Daniel C. Green
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK;
| | - Christopher J. Hill
- Department of Women’s and Children’s Health, University of Liverpool, Crown St, Liverpool L69 7ZX, UK; (A.B.); (J.D.); (C.J.H.)
| | - Dharani K. Hapangama
- Department of Women’s and Children’s Health, University of Liverpool, Crown St, Liverpool L69 7ZX, UK; (A.B.); (J.D.); (C.J.H.)
- Liverpool Women’s NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool L8 7SS, UK
| |
Collapse
|
7
|
Md Fuzi AA, Omar SZ, Mohamed Z, Mat Adenan NA, Mokhtar NM. High throughput silencing identifies novel genes in endometrioid endometrial cancer. Taiwan J Obstet Gynecol 2018; 57:217-226. [PMID: 29673664 DOI: 10.1016/j.tjog.2018.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2017] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE To validate the gene expression profile obtained from the previous microarray analysis and to further study the biological functions of these genes in endometrial cancer. From our previous study, we identified 621 differentially expressed genes in laser-captured microdissected endometrioid endometrial cancer as compared to normal endometrial cells. Among these genes, 146 were significantly up-regulated in endometrial cancer. MATERIALS AND METHODS A total of 20 genes were selected from the list of up-regulated genes for the validation assay. The qPCR confirmed that 19 out of the 20 genes were up-regulated in endometrial cancer compared with normal endometrium. RNA interference (RNAi) was used to knockdown the expression of the upregulated genes in ECC-1 and HEC-1A endometrial cancer cell lines and its effect on proliferation, migration and invasion were examined. RESULTS Knockdown of MIF, SOD2, HIF1A and SLC7A5 by RNAi significantly decreased the proliferation of ECC-1 cells (p < 0.05). Our results also showed that the knockdown of MIF, SOD2 and SLC7A5 by RNAi significantly decreased the proliferation and migration abilities of HEC-1A cells (p < 0.05). Moreover, the knockdown of SLC38A1 and HIF1A by RNAi resulted in a significant decrease in the proliferation of HEC1A cells (p < 0.05). CONCLUSION We have identified the biological roles of SLC38A1, MIF, SOD2, HIF1A and SLC7A5 in endometrial cancer, which opens up the possibility of using the RNAi silencing approach to design therapeutic strategies for treatment of endometrial cancer.
Collapse
Affiliation(s)
- Afiqah Alyaa Md Fuzi
- Department of Pharmacology, Faculty of Medicine, University Malaya, 50603 Kuala Lumpur, Malaysia
| | - Siti Zawiah Omar
- Department of Obstetrics and Gynecology, Faculty of Medicine, University Malaya, 50603 Kuala Lumpur, Malaysia
| | - Zahurin Mohamed
- Department of Pharmacology, Faculty of Medicine, University Malaya, 50603 Kuala Lumpur, Malaysia
| | - Noor Azmi Mat Adenan
- Department of Obstetrics and Gynecology, Faculty of Medicine, University Malaya, 50603 Kuala Lumpur, Malaysia
| | - Norfilza Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Zhai S, Xue J, Wang Z, Hu L. High expression of special AT-rich sequence binding protein-1 predicts esophageal squamous cell carcinoma relapse and poor prognosis. Oncol Lett 2017; 14:7455-7460. [PMID: 29344188 DOI: 10.3892/ol.2017.7081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/21/2017] [Indexed: 02/05/2023] Open
Abstract
Previous studies of the roles of special AT-rich sequence binding protein-1 (SATB1) in the development and progression of cancer have suggested that SATB1 promotes cancer cell metastasis. The aim of the present study is to evaluate the role of SATB1 in the progression and prognosis of esophageal squamous cell carcinoma (ESCC). ESCC tissues were collected from 102 patients and SATB1 mRNA expression was measured by reverse transcription-quantitative polymerase chain reaction. The association between expression of SATB1 mRNA with clinicopathological features and prognosis was assessed, and the prognosis of ESCC was evaluated using Kaplan-Meier survival curves. In the 102 ESCC tissues, SATB1 mRNA expression correlated with the clinical tumor node metastasis stage (P<0.05), but not with any other clinicopathological features (including age, gender, tumor differentiation grade, adjuvant radio/chemotherapy, or the consumption of alcohol and use of cigarettes) (P>0.05). The disease-free survival (DFS) and overall survival (OS) of patients with high SATB1 expression was decreased compared with those with low SATB1 expression. The present study indicated that SATB1 mRNA expression was associated with the postoperative recurrent and poor prognosis in ESCC. SATB1 may be a novel marker for predicting the recurrent and worse prognosis of ESCC.
Collapse
Affiliation(s)
- Songhui Zhai
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jianxin Xue
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zheng Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lijuan Hu
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
9
|
Song G, Liu K, Yang X, Mu B, Yang J, He L, Hu X, Li Q, Zhao Y, Cai X, Feng G. SATB1 plays an oncogenic role in esophageal cancer by up-regulation of FN1 and PDGFRB. Oncotarget 2017; 8:17771-17784. [PMID: 28147311 PMCID: PMC5392285 DOI: 10.18632/oncotarget.14849] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/16/2017] [Indexed: 12/22/2022] Open
Abstract
Esophageal cancer is a highly aggressive malignancy with very poor overall prognosis. Given the strong clinical relevance of SATB1 in esophagus cancer and other cancers suggested by previous studies, the exact function of SATB1 in esophagus cancer development is still unknown. Here we showed that the knockdown of SATB1 in esophageal cancer cell lines diminished the cell proliferation, survival and invasion. Whole genome transcriptome analysis of SATB1 knockdown cells revealed the different gene expression profiles between TE-1 cells and MDA-MB-231 cells. Network analysis and functional experiments further identified FN1 and PDGFRB to be key downstream genes regulated by SATB1 in esophageal cancer cells. Importantly, FN1 and PDGFRB were found to be highly expressed in human esophageal cancer. In summary, we provided the first molecular evidence that SATB1 played an oncogenic role in esophageal cancer by up-regulation of FN1 and PDGFRB.
Collapse
Affiliation(s)
- Guiqin Song
- Department of Biology, North Sichuan Medical College, Nanchong, Sichuan, P.R. China.,Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, P.R. China.,State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Kang Liu
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, P.R. China.,Biotherapy Center, Nanchong Central Hospital, Nanchong, Sichuan, P.R. China
| | - Xiaolin Yang
- Department of Biology, North Sichuan Medical College, Nanchong, Sichuan, P.R. China.,Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, P.R. China
| | - Bo Mu
- Department of Biology, North Sichuan Medical College, Nanchong, Sichuan, P.R. China
| | - Junbao Yang
- Department of Biology, North Sichuan Medical College, Nanchong, Sichuan, P.R. China
| | - Lang He
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, P.R. China.,Biotherapy Center, Nanchong Central Hospital, Nanchong, Sichuan, P.R. China
| | - Xin Hu
- Biotherapy Center, Nanchong Central Hospital, Nanchong, Sichuan, P.R. China
| | - Qiujiang Li
- Clinical College of North Sichuan Medical College, Nanchong, Sichuan, P.R. China
| | - Yunxia Zhao
- Clinical College of North Sichuan Medical College, Nanchong, Sichuan, P.R. China
| | - Xiaoming Cai
- Department of Biology, North Sichuan Medical College, Nanchong, Sichuan, P.R. China
| | - Gang Feng
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, P.R. China.,Biotherapy Center, Nanchong Central Hospital, Nanchong, Sichuan, P.R. China
| |
Collapse
|
10
|
Zhao L, Li Z, Chen W, Zhai W, Pan J, Pang H, Li X. H19 promotes endometrial cancer progression by modulating epithelial-mesenchymal transition. Oncol Lett 2016; 13:363-369. [PMID: 28123568 DOI: 10.3892/ol.2016.5389] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/07/2016] [Indexed: 12/21/2022] Open
Abstract
Endometrial cancer is one of the most common types of gynecological malignancy worldwide. Novel biomarkers and therapeutic targets are imperative for improving patients' survival. Previous studies have suggested the long non-coding RNA H19 as a potential cancer biomarker. To investigate the role of H19 in endometrial cancer, the present study examined the expression pattern of H19 in endometrial cancer tissues by quantitative polymerase chain reaction, and characterized its function in the endometrial cancer cell line via knocking down its expression with small interfering RNAs. It was found that H19 level was significantly higher in tumor tissues than in paratumoral tissues. Knockdown of H19 did not affect the growth rate of HEC-1-B endometrial cancer cells, but significantly suppressed in vitro migration and invasion of HEC-1-B cells. Furthermore, H19 downregulation decreased Snail level and increased E-cadherin expression without affecting vimentin level, indicating partial reversion of epithelial-mesenchymal transition (EMT). The present findings suggested that H19 contributed to the aggressiveness of endometrial cancer by modulating EMT process.
Collapse
Affiliation(s)
- Le Zhao
- Center for Translational Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zhen Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wei Chen
- Center for Laboratory Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wen Zhai
- Center for Laboratory Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jingjing Pan
- Center for Laboratory Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Huan Pang
- Center for Laboratory Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xu Li
- Center for Translational Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
11
|
Overexpression of Special AT-Rich Sequence-Binding Protein 1 in Endometrial Cancer: A Clinicopathologic Study. Int J Gynecol Cancer 2015; 25:4-11. [DOI: 10.1097/igc.0000000000000314] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
ObjectiveSpecial AT-rich sequence-binding protein 1 (SATB1), as a genome organizer, serves important functions in tumor progression and metastasis. The SATB1 is overexpressed in various malignant tumors. However, the expression and prognostic value of SATB1 in endometrial cancer remain unknown. The aim of this study was to explore the prognostic values of SATB1 expression in endometrial cancer.Methods/MaterialsWe investigated the expression of SATB1 in 172 untreated endometrial cancer tissues and 25 normal endometrial tissues through immunohistochemical staining. We also analyzed the association of SATB1 level with clinicopathologic parameters and determined its prognostic significance.ResultSpecial AT-rich sequence-binding protein 1 was expressed in 78 (45.3%) of the 172 endometrial cancer samples, but not in the normal endometrial samples. The positive expression of SATB1 was associated with clinicopathologic factors, such as International Federation of Gynecology and Obstetrics stage, histological grade, myometrial invasion depth, lymph node metastasis, vascular/lymphatic invasion, and recurrence. The patients with positive SATB1 expression had worse overall survival and disease-free survival rates than the patients with negative SATB1 expression (P< 0.001 for both). Multivariate Cox analysis indicated that SATB1 was an independent parameter for overall survival (hazards ratio, 2.928; 95% confidence interval, 1.072–7.994;P= 0.036) and disease-free survival (hazards ratio, 2.825; 95% confidence interval, 1.111–7.181;P= 0.029).ConclusionsResults showed that SATB1 may be involved in tumor development and progression in endometrial cancer, may serve as a promising biomarker for predicting the prognosis of endometrial cancer patients, and thus may act as a novel target for treating endometrial carcinoma.
Collapse
|
12
|
Minning C, Mokhtar NM, Abdullah N, Muhammad R, Emran NA, Ali SAMD, Harun R, Jamal R. Exploring breast carcinogenesis through integrative genomics and epigenomics analyses. Int J Oncol 2014; 45:1959-68. [PMID: 25175708 DOI: 10.3892/ijo.2014.2625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 07/18/2014] [Indexed: 11/05/2022] Open
Abstract
There have been many DNA methylation studies on breast cancer which showed various methylation patterns involving tumour suppressor genes and oncogenes but only a few of those studies link the methylation data with gene expression. More data are required especially from the Asian region and to analyse how the epigenome data correlate with the transcriptome. DNA methylation profiling was carried out on 76 fresh frozen primary breast tumour tissues and 25 adjacent non-cancerous breast tissues using the Illumina Infinium(®) HumanMethylation27 BeadChip. Validation of methylation results was performed on 7 genes using either MS-MLPA or MS-qPCR. Gene expression profiling was done on 15 breast tumours and 5 adjacent non-cancerous breast tissues using the Affymetrix GeneChip(®) Human Gene 1.0 ST array. The overlapping genes between DNA methylation and gene expression datasets were further mapped to the KEGG database to identify the molecular pathways that linked these genes together. Supervised hierarchical cluster analysis revealed 1,389 hypermethylated CpG sites and 22 hypomethylated CpG sites in cancer compared to the normal samples. Gene expression microarray analysis using a fold-change of at least 1.5 and a false discovery rate (FDR) at p>0.05 identified 404 upregulated and 463 downregulated genes in cancer samples. Integration of both datasets identified 51 genes with hypermethylation with low expression (negative association) and 13 genes with hypermethylation with high expression (positive association). Most of the overlapping genes belong to the focal adhesion and extracellular matrix-receptor interaction that play important roles in breast carcinogenesis. The present study displayed the value of using multiple datasets in the same set of tissues and how the integrative analysis can create a list of well-focused genes as well as to show the correlation between epigenetic changes and gene expression. These gene signatures can help us understand the epigenetic regulation of gene expression and could be potential targets for therapeutic intervention in the future.
Collapse
Affiliation(s)
- Chin Minning
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norfilza Mohd Mokhtar
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norlia Abdullah
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rohaizak Muhammad
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Aina Emran
- Department of Surgery, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Siti Aishah M D Ali
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Roslan Harun
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Wang M, Yin B, Matsueda S, Deng L, Li Y, Zhao W, Zou J, Li Q, Loo C, Wang RF, Wang HY. Identification of special AT-rich sequence binding protein 1 as a novel tumor antigen recognized by CD8+ T cells: implication for cancer immunotherapy. PLoS One 2013; 8:e56730. [PMID: 23437226 PMCID: PMC3578933 DOI: 10.1371/journal.pone.0056730] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/14/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND A large number of human tumor-associated antigens that are recognized by CD8(+) T cells in a human leukocyte antigen class I (HLA-I)-restricted fashion have been identified. Special AT-rich sequence binding protein 1 (SATB1) is highly expressed in many types of human cancers as part of their neoplastic phenotype, and up-regulation of SATB1 expression is essential for tumor survival and metastasis, thus this protein may serve as a rational target for cancer vaccines. METHODOLOGY/PRINCIPAL FINDINGS Twelve SATB1-derived peptides were predicted by an immuno-informatics approach based on the HLA-A*02 binding motif. These peptides were examined for their ability to induce peptide-specific T cell responses in peripheral blood mononuclear cells (PBMCs) obtained from HLA-A*02(+) healthy donors and/or HLA-A*02(+) cancer patients. The recognition of HLA-A*02(+) SATB1-expressing cancer cells was also tested. Among the twelve SATB1-derived peptides, SATB1(565-574) frequently induced peptide-specific T cell responses in PBMCs from both healthy donors and cancer patients. Importantly, SATB1(565-574)-specific T cells recognized and killed HLA-A*02(+) SATB1(+) cancer cells in an HLA-I-restricted manner. CONCLUSIONS/SIGNIFICANCE We have identified a novel HLA-A*02-restricted SATB1-derived peptide epitope recognized by CD8(+) T cells, which, in turn, recognizes and kills HLA-A*02(+) SATB1(+) tumor cells. The SATB1-derived epitope identified may be used as a diagnostic marker as well as an immune target for development of cancer vaccines.
Collapse
Affiliation(s)
- Mingjun Wang
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
| | - Bingnan Yin
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Satoko Matsueda
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lijuan Deng
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Ying Li
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wei Zhao
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Jia Zou
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Qingtian Li
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Christopher Loo
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Rong-Fu Wang
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
| | - Helen Y. Wang
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
14
|
Zhurov V, Stead JDH, Merali Z, Palkovits M, Faludi G, Schild-Poulter C, Anisman H, Poulter MO. Molecular pathway reconstruction and analysis of disturbed gene expression in depressed individuals who died by suicide. PLoS One 2012; 7:e47581. [PMID: 23110080 PMCID: PMC3478292 DOI: 10.1371/journal.pone.0047581] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/17/2012] [Indexed: 12/22/2022] Open
Abstract
Molecular mechanisms behind the etiology and pathophysiology of major depressive disorder and suicide remain largely unknown. Recent molecular studies of expression of serotonin, GABA and CRH receptors in various brain regions have demonstrated that molecular factors may contribute to the development of depressive disorder and suicide behaviour. Here, we used microarray analysis to examine the expression of genes in brain tissue (frontopolar cortex) of individuals who had been diagnosed with major depressive disorder and died by suicide, and those who had died suddenly without a history of depression. We analyzed the list of differentially expressed genes using pathway analysis, which is an assumption-free approach to analyze microarray data. Our analysis revealed that the differentially expressed genes formed functional networks that were implicated in cell to cell signaling related to synapse maturation, neuronal growth and neuronal complexity. We further validated these data by randomly choosing (100 times) similarly sized gene lists and subjecting these lists to the same analyses. Random gene lists did not provide highly connected gene networks like those generated by the differentially expressed list derived from our samples. We also found through correlational analysis that the gene expression of control participants was more highly coordinated than in the MDD/suicide group. These data suggest that among depressed individuals who died by suicide, wide ranging perturbations of gene expression exist that are critical for normal synaptic connectively, morphology and cell to cell communication.
Collapse
Affiliation(s)
- Vladimir Zhurov
- Molecular Brain Research Group, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - John D. H. Stead
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Zul Merali
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada
- Departments of Psychology, Psychiatry and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Miklos Palkovits
- Laboratory for Neuromorphology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Gabor Faludi
- Semmelweis University Hospital, Budapest, Hungary
| | - Caroline Schild-Poulter
- Molecular Brain Research Group, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Hymie Anisman
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Michael O. Poulter
- Molecular Brain Research Group, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
15
|
Kohwi-Shigematsu T, Poterlowicz K, Ordinario E, Han HJ, Botchkarev VA, Kohwi Y. Genome organizing function of SATB1 in tumor progression. Semin Cancer Biol 2012; 23:72-9. [PMID: 22771615 DOI: 10.1016/j.semcancer.2012.06.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 06/26/2012] [Indexed: 02/07/2023]
Abstract
When cells change functions or activities (such as during differentiation, response to extracellular stimuli, or migration), gene expression undergoes large-scale reprogramming, in cell type- and function-specific manners. Large changes in gene regulation require changes in chromatin architecture, which involve recruitment of chromatin remodeling enzymes and epigenomic modification enzymes to specific genomic loci. Transcription factors must also be accurately assembled at these loci. SATB1 is a genome organizer protein that facilitates these processes, providing a nuclear architectural platform that anchors hundreds of genes, through its interaction with specific genomic sequences; this activity allows expression of all these genes to be regulated in parallel, and enables cells to thereby alter their function. We review and describe future perspectives on SATB1 function in higher-order chromatin structure and gene regulation, and its role in metastasis of breast cancer and other tumor types.
Collapse
Affiliation(s)
- Terumi Kohwi-Shigematsu
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA.
| | | | | | | | | | | |
Collapse
|