1
|
Koukara J, Papadopoulou KK. Advances in plant synthetic biology approaches to control expression of gene circuits. Biochem Biophys Res Commun 2023; 654:55-61. [PMID: 36889035 DOI: 10.1016/j.bbrc.2023.02.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023]
Abstract
The applications of synthetic biology range from creating simple circuits to monitor an organism's state to complex circuits capable of reconstructing aspects of life. The latter has the potential to be used in plant synthetic biology to address current societal issues by reforming agriculture and enhancing production of molecules of increased demand. For this reason, development of efficient tools to precisely control gene expression of circuits must be prioritized. In this review, we report the latest efforts towards characterization, standardization and assembly of genetic parts into higher-order constructs, as well as available types of inducible systems to modulate their transcription in plant systems. Subsequently, we discuss recent developments in the orthogonal control of gene expression, Boolean logic gates and synthetic genetic toggle-like switches. Finally, we conclude that by combining different means of controlling gene expression, we can create complex circuits capable of reshaping plant life.
Collapse
Affiliation(s)
- Jenny Koukara
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Kalliope K Papadopoulou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece.
| |
Collapse
|
2
|
Danila F, Schreiber T, Ermakova M, Hua L, Vlad D, Lo S, Chen Y, Lambret‐Frotte J, Hermanns AS, Athmer B, von Caemmerer S, Yu S, Hibberd JM, Tissier A, Furbank RT, Kelly S, Langdale JA. A single promoter-TALE system for tissue-specific and tuneable expression of multiple genes in rice. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1786-1806. [PMID: 35639605 PMCID: PMC9398400 DOI: 10.1111/pbi.13864] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/06/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
In biological discovery and engineering research, there is a need to spatially and/or temporally regulate transgene expression. However, the limited availability of promoter sequences that are uniquely active in specific tissue-types and/or at specific times often precludes co-expression of multiple transgenes in precisely controlled developmental contexts. Here, we developed a system for use in rice that comprises synthetic designer transcription activator-like effectors (dTALEs) and cognate synthetic TALE-activated promoters (STAPs). The system allows multiple transgenes to be expressed from different STAPs, with the spatial and temporal context determined by a single promoter that drives expression of the dTALE. We show that two different systems-dTALE1-STAP1 and dTALE2-STAP2-can activate STAP-driven reporter gene expression in stable transgenic rice lines, with transgene transcript levels dependent on both dTALE and STAP sequence identities. The relative strength of individual STAP sequences is consistent between dTALE1 and dTALE2 systems but differs between cell-types, requiring empirical evaluation in each case. dTALE expression leads to off-target activation of endogenous genes but the number of genes affected is substantially less than the number impacted by the somaclonal variation that occurs during the regeneration of transformed plants. With the potential to design fully orthogonal dTALEs for any genome of interest, the dTALE-STAP system thus provides a powerful approach to fine-tune the expression of multiple transgenes, and to simultaneously introduce different synthetic circuits into distinct developmental contexts.
Collapse
Affiliation(s)
- Florence Danila
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Plant Sciences Division, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Tom Schreiber
- Department of Cell and Metabolic BiologyLeibniz Institute of Plant BiochemistryHalleGermany
| | - Maria Ermakova
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Plant Sciences Division, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Lei Hua
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Daniela Vlad
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | - Shuen‐Fang Lo
- Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
| | - Yi‐Shih Chen
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
| | | | - Anna S. Hermanns
- Department of Plant SciencesUniversity of OxfordOxfordUK
- Present address:
Plant Breeding and Genetics Section, School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
| | - Benedikt Athmer
- Department of Cell and Metabolic BiologyLeibniz Institute of Plant BiochemistryHalleGermany
| | - Susanne von Caemmerer
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Plant Sciences Division, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Su‐May Yu
- Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
| | | | - Alain Tissier
- Department of Cell and Metabolic BiologyLeibniz Institute of Plant BiochemistryHalleGermany
| | - Robert T. Furbank
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Plant Sciences Division, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Steven Kelly
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | | |
Collapse
|
3
|
Talakayala A, Mekala GK, Reddy MK, Ankanagari S, Garladinne M. Manipulating resistance to mungbean yellow mosaic virus in greengram (Vigna radiata L): Through CRISPR/Cas9 mediated editing of the viral genome. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.911574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) associated protein (CRISPR/Cas9) is an adaptive immune system of bacteria to counter the impending viral pathogen attack. With persistent improvements, CRISPR has become a versatile tool for developing molecular immunity against viruses in plants. In the current report, we utilized the Cas9 endonuclease and dual 20 bp-gRNAs targeting two different locations in single-stranded DNA-A of AC1 (rep protein) and AV1 (coat protein) of mungbean yellow mosaic virus for achieving resistance in greengram. The cotyledonary nodal explants were infected with Agrobacterium strain EHA105 harboring pMDC100-Cas9 with AC1 and AV1 gRNA cassettes and generated transgenic plants. The integration of Cas9 and gRNA cassettes in the transformed plants of greengram were confirmed by PCR and dot blot assays. Agroinfiltrated T2 transgenic lines exhibited minimal mosaic symptoms. A drastic reduction in the accumulation of AC1 and AV1 was observed in T2 transformed lines. The T7EI assay indicated that AC1 fragments were edited at a frequency of 46%, 32%, 20%, and AV1 at 38.15%, 40%, and 21.36% in MYMV infected greengram lines T2-6-2-3, T2-6-4-4, and T2-6-4-7, respectively. The manipulation of resistance to MYMV through the editing of the pathogen genome using the CRISPR/Cas9 tool can be a powerful approach to combat viruses and develop resistance in greengram.
Collapse
|
4
|
Zhang S, Sun X, Mou M, Amahong K, Sun H, Zhang W, Shi S, Li Z, Gao J, Zhu F. REGLIV: Molecular regulation data of diverse living systems facilitating current multiomics research. Comput Biol Med 2022; 148:105825. [PMID: 35872412 DOI: 10.1016/j.compbiomed.2022.105825] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 12/24/2022]
Abstract
Multiomics is a powerful technique in molecular biology that facilitates the identification of new associations among different molecules (genes, proteins & metabolites). It has attracted tremendous research interest from the scientists worldwide and has led to an explosive number of published studies. Most of these studies are based on the regulation data provided in available databases. Therefore, it is essential to have molecular regulation data that are strictly validated in the living systems of various cell lines and in vivo models. However, no database has been developed yet to provide comprehensive molecular regulation information validated by living systems. Herein, a new database, Molecular Regulation Data of Living System Facilitating Multiomics Study (REGLIV) is introduced to describe various types of molecular regulation tested by the living systems. (1) A total of 2996 regulations describe the changes in 1109 metabolites triggered by alterations in 284 genes or proteins, and (2) 1179 regulations describe the variations in 926 proteins induced by 125 endogenous metabolites. Overall, REGLIV is unique in (a) providing the molecular regulation of a clearly defined regulatory direction other than simple correlation, (b) focusing on molecular regulations that are validated in a living system not simply in an in vitro test, and (c) describing the disease/tissue/species specific property underlying each regulation. Therefore, REGLIV has important implications for the future practice of not only multiomics, but also other fields relevant to molecular regulation. REGLIV is freely accessible at: https://idrblab.org/regliv/.
Collapse
Affiliation(s)
- Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiuna Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kuerbannisha Amahong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huaicheng Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shuiyang Shi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China.
| |
Collapse
|
5
|
Niraula PM, Fondong VN. Development and Adoption of Genetically Engineered Plants for Virus Resistance: Advances, Opportunities and Challenges. PLANTS 2021; 10:plants10112339. [PMID: 34834702 PMCID: PMC8623320 DOI: 10.3390/plants10112339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 11/20/2022]
Abstract
Plant viruses cause yield losses to crops of agronomic and economic significance and are a challenge to the achievement of global food security. Although conventional plant breeding has played an important role in managing plant viral diseases, it will unlikely meet the challenges posed by the frequent emergence of novel and more virulent viral species or viral strains. Hence there is an urgent need to seek alternative strategies of virus control that can be more readily deployed to contain viral diseases. The discovery in the late 1980s that viral genes can be introduced into plants to engineer resistance to the cognate virus provided a new avenue for virus disease control. Subsequent advances in genomics and biotechnology have led to the refinement and expansion of genetic engineering (GE) strategies in crop improvement. Importantly, many of the drawbacks of conventional breeding, such as long lead times, inability or difficulty to cross fertilize, loss of desirable plant traits, are overcome by GE. Unfortunately, public skepticism towards genetically modified (GM) crops and other factors have dampened the early promise of GE efforts. These concerns are principally about the possible negative effects of transgenes to humans and animals, as well as to the environment. However, with regards to engineering for virus resistance, these risks are overstated given that most virus resistance engineering strategies involve transfer of viral genes or genomic segments to plants. These viral genomes are found in infected plant cells and have not been associated with any adverse effects in humans or animals. Thus, integrating antiviral genes of virus origin into plant genomes is hardly unnatural as suggested by GM crop skeptics. Moreover, advances in deep sequencing have resulted in the sequencing of large numbers of plant genomes and the revelation of widespread endogenization of viral genomes into plant genomes. This has raised the possibility that viral genome endogenization is part of an antiviral defense mechanism deployed by the plant during its evolutionary past. Thus, GM crops engineered for viral resistance would likely be acceptable to the public if regulatory policies were product-based (the North America regulatory model), as opposed to process-based. This review discusses some of the benefits to be gained from adopting GE for virus resistance, as well as the challenges that must be overcome to leverage this technology. Furthermore, regulatory policies impacting virus-resistant GM crops and some success cases of virus-resistant GM crops approved so far for cultivation are discussed.
Collapse
|
6
|
Saifaldeen M, Al-Ansari DE, Ramotar D, Aouida M. Dead Cas9-sgRNA Complex Shelters Vulnerable DNA Restriction Enzyme Sites from Cleavage for Cloning Applications. CRISPR J 2021; 4:275-289. [PMID: 33876957 DOI: 10.1089/crispr.2020.0134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The creation of the nuclease-dead Cas protein (dCas9) offers a new platform for a plethora of new discoveries. Diverse dCas9 tools have been developed for transcription regulation, epigenetic engineering, base editing, genome imaging, genetic screens, and chromatin immunoprecipitation. Here, we show that dCas9 and single-guide RNA preassembled to form ribonucleoprotein dCas9-sgRNA (referred to as dRNP) is capable of specifically and reversibly blocking the activity of DNA cleavage by restriction enzymes (REs). We show that the inhibition of RE activities occurs when the recognition or the cleavage site of the DNA is overlapped by the sgRNA or the protospacer adjacent motif sequence. Furthermore, we show that multiple dRNPs can be used simultaneously to inhibit more than one RE sites. As such, we exploited this novel finding as a method to demonstrate that inserts can be ligated into vectors, and vice versa, whereby selective RE sites are temporarily sheltered to allow the desired cloning.
Collapse
Affiliation(s)
- Maryam Saifaldeen
- College of Health and Life Sciences, Division of Biological and Biomedical Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Dana E Al-Ansari
- College of Health and Life Sciences, Division of Biological and Biomedical Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Dindial Ramotar
- College of Health and Life Sciences, Division of Biological and Biomedical Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Mustapha Aouida
- College of Health and Life Sciences, Division of Biological and Biomedical Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
7
|
Li H, Cui X, Sun L, Deng X, Liu S, Zou X, Li B, Wang C, Wang Y, Liu Y, Lu B, Cao B. High concentration of Cas12a effector tolerates more mismatches on ssDNA. FASEB J 2020; 35:e21153. [PMID: 33159392 DOI: 10.1096/fj.202001475r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 12/26/2022]
Abstract
Rapid pathogen detection is critical for prompt treatment, interrupting transmission routes, and decreasing morbidity and mortality. The V-type CRISPR system had been used for rapid pathogen detection. However, whether single-stranded DNA in CRISPR system can cause false positives remains undetermined. Herein, we show that high molar concentration of Cas12a effector tolerated more mismatches on ssDNA and activated its trans-cleavage activity at six base matches. Reducing Cas12a and crRNA molar concentration increased the minimal base-match number required for Cas12a ssDNA activation to 11, which reducing nonspecific activation. We then established a Cas12a-based M tuberculosis detection system with a primer having an 8 bp overlap with crRNA. This system did not exhibit primer-induced false positives, and minimum detection copy reached 1 copy/uL (inputting 1-μL sample) in standard strains. The Cas12a-based M tuberculosis detection system showed 80.0% sensitivity and 100.0% specificity in verification using clinical specimens, compared with Xpert MTB/RIF, which showed 72.0% sensitivity and 90.9% specificity. All these results prove that appropriate concentration of cas12a effector can effectively perform nucleic acid detection.
Collapse
Affiliation(s)
- Haibo Li
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, P. R. China.,Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing, P. R. China.,National Clinical Research Center for Respiratory Diseases, Capital Medical University, Beijing, P. R. China
| | - Xiaojing Cui
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, P. R. China.,Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing, P. R. China.,National Clinical Research Center for Respiratory Diseases, Capital Medical University, Beijing, P. R. China
| | - Lingxiao Sun
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, P. R. China.,Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing, P. R. China.,National Clinical Research Center for Respiratory Diseases, Capital Medical University, Beijing, P. R. China
| | - Xiaoyan Deng
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, P. R. China.,Clinical Center for Pulmonary Infections, Capital Medical University, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, P. R. China
| | - Shuai Liu
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, P. R. China.,Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing, P. R. China.,National Clinical Research Center for Respiratory Diseases, Capital Medical University, Beijing, P. R. China.,Clinical Center for Pulmonary Infections, Capital Medical University, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, P. R. China
| | - Xiaohui Zou
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, P. R. China.,Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing, P. R. China.,National Clinical Research Center for Respiratory Diseases, Capital Medical University, Beijing, P. R. China
| | - Binbin Li
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, P. R. China.,Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing, P. R. China.,National Clinical Research Center for Respiratory Diseases, Capital Medical University, Beijing, P. R. China
| | - Chunlei Wang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, P. R. China.,Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing, P. R. China.,National Clinical Research Center for Respiratory Diseases, Capital Medical University, Beijing, P. R. China
| | - Yeming Wang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, P. R. China.,Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing, P. R. China.,National Clinical Research Center for Respiratory Diseases, Capital Medical University, Beijing, P. R. China.,Clinical Center for Pulmonary Infections, Capital Medical University, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, P. R. China
| | - Yinmei Liu
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, P. R. China.,Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing, P. R. China.,National Clinical Research Center for Respiratory Diseases, Capital Medical University, Beijing, P. R. China
| | - Binghuai Lu
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, P. R. China.,Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing, P. R. China.,National Clinical Research Center for Respiratory Diseases, Capital Medical University, Beijing, P. R. China
| | - Bin Cao
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, P. R. China.,Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing, P. R. China.,National Clinical Research Center for Respiratory Diseases, Capital Medical University, Beijing, P. R. China.,Clinical Center for Pulmonary Infections, Capital Medical University, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, P. R. China
| |
Collapse
|
8
|
Santos-Moreno J, Schaerli Y. CRISPR-based gene expression control for synthetic gene circuits. Biochem Soc Trans 2020; 48:1979-1993. [PMID: 32964920 PMCID: PMC7609024 DOI: 10.1042/bst20200020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022]
Abstract
Synthetic gene circuits allow us to govern cell behavior in a programmable manner, which is central to almost any application aiming to harness engineered living cells for user-defined tasks. Transcription factors (TFs) constitute the 'classic' tool for synthetic circuit construction but some of their inherent constraints, such as insufficient modularity, orthogonality and programmability, limit progress in such forward-engineering endeavors. Here we review how CRISPR (clustered regularly interspaced short palindromic repeats) technology offers new and powerful possibilities for synthetic circuit design. CRISPR systems offer superior characteristics over TFs in many aspects relevant to a modular, predictable and standardized circuit design. Thus, the choice of CRISPR technology as a framework for synthetic circuit design constitutes a valid alternative to complement or replace TFs in synthetic circuits and promises the realization of more ambitious designs.
Collapse
Affiliation(s)
- Javier Santos-Moreno
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Tissue-Specific Delivery of CRISPR Therapeutics: Strategies and Mechanisms of Non-Viral Vectors. Int J Mol Sci 2020; 21:ijms21197353. [PMID: 33027946 PMCID: PMC7583726 DOI: 10.3390/ijms21197353] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) genome editing system has been the focus of intense research in the last decade due to its superior ability to desirably target and edit DNA sequences. The applicability of the CRISPR-Cas system to in vivo genome editing has acquired substantial credit for a future in vivo gene-based therapeutic. Challenges such as targeting the wrong tissue, undesirable genetic mutations, or immunogenic responses, need to be tackled before CRISPR-Cas systems can be translated for clinical use. Hence, there is an evident gap in the field for a strategy to enhance the specificity of delivery of CRISPR-Cas gene editing systems for in vivo applications. Current approaches using viral vectors do not address these main challenges and, therefore, strategies to develop non-viral delivery systems are being explored. Peptide-based systems represent an attractive approach to developing gene-based therapeutics due to their specificity of targeting, scale-up potential, lack of an immunogenic response and resistance to proteolysis. In this review, we discuss the most recent efforts towards novel non-viral delivery systems, focusing on strategies and mechanisms of peptide-based delivery systems, that can specifically deliver CRISPR components to different cell types for therapeutic and research purposes.
Collapse
|
10
|
Abstract
The traditional view of protein aggregation as being strictly disease-related has been challenged by many examples of cellular aggregates that regulate beneficial biological functions. When coupled with the emerging view that many regulatory proteins undergo phase separation to form dynamic cellular compartments, it has become clear that supramolecular assembly plays wide-ranging and critical roles in cellular regulation. This presents opportunities to develop new tools to probe and illuminate this biology, and to harness the unique properties of these self-assembling systems for synthetic biology for the purposeful manipulation of biological function.
Collapse
Affiliation(s)
- Giulio Chiesa
- Biological Design Center, Boston University, Boston, MA, 02215, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Szilvia Kiriakov
- Biological Design Center, Boston University, Boston, MA, 02215, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Ahmad S Khalil
- Biological Design Center, Boston University, Boston, MA, 02215, USA. .,Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA. .,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Roy A, Zhai Y, Ortiz J, Neff M, Mandal B, Mukherjee SK, Pappu HR. Multiplexed editing of a begomovirus genome restricts escape mutant formation and disease development. PLoS One 2019; 14:e0223765. [PMID: 31644604 PMCID: PMC6808502 DOI: 10.1371/journal.pone.0223765] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 09/19/2019] [Indexed: 11/19/2022] Open
Abstract
Whitefly-transmitted begomoviruses cause serious damage to many economically important food, feed, and fiber crops. Numerous vegetable crops are severely affected and chilli leaf curl virus (ChiLCV) is the most dominant and widely distributed begomovirus in chilli (Capsicum annuum) throughout the Indian subcontinent. Recently, CRISPR-Cas9 technology was used as a means to reduce geminivirus replication in infected plants. However, this approach was shown to have certain limitations such as the evolution of escape mutants. In this study, we used a novel, multiplexed guide RNA (gRNA) based CRISPR-Cas9 approach that targets the viral genome at two or more sites simultaneously. This tactic was effective in eliminating the ChiLCV genome without recurrence of functional escape mutants. Six individual gRNA spacer sequences were designed from the ChiLCV genome and in vitro assays confirmed the cleavage behaviour of these spacer sequences. Multiplexed gRNA expression clones, based on combinations of the above-mentioned spacer sequences, were developed. A total of nine-duplex and two-triplex CRISPR-Cas9 constructs were made. The efficacy of these constructs was tested for inhibition of ChiLCV infection in Nicotiana benthamiana. Results indicated that all the constructs caused a significant reduction in viral DNA accumulation. In particular, three constructs (gRNA5+4, gRNA5+2 and gRNA1+2) were most effective in reducing the viral titer and symptoms. T7E1 assay and sequencing of the targeted viral genome did not detect any escape mutants. The multiplexed genome-editing technique could be an effective way to trigger a high level of resistance against begemoviruses. To our knowledge, this is the first report of demonstrating the effectiveness of a multiplexed gRNA-based plant virus genome editing to minimize and eliminate escape mutant formation.
Collapse
Affiliation(s)
- Anirban Roy
- Department of Plant Pathology, Washington State University, Pullman, WA, United States of America
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Ying Zhai
- Department of Plant Pathology, Washington State University, Pullman, WA, United States of America
| | - Jessica Ortiz
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States of America
| | - Michael Neff
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States of America
| | - Bikash Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Sunil Kumar Mukherjee
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States of America
| |
Collapse
|
12
|
Wang W, Huang D, Ren J, Li R, Feng Z, Guan C, Bao B, Cai B, Ling J, Zhou C. Optogenetic control of mesenchymal cell fate towards precise bone regeneration. Am J Cancer Res 2019; 9:8196-8205. [PMID: 31754390 PMCID: PMC6857041 DOI: 10.7150/thno.36455] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
Rationale: Spatial-temporal control of cell fate in vivo is of great importance for regenerative medicine. Currently, there remain no practical strategies to tune cell-fate spatial-temporally. Optogenetics is a biological technique that widely used to control cell activity in genetically defined neurons in a spatiotemporal-specific manner by light. In this study, optogenetics was repurposed for precise bone tissue regeneration. Methods: Lhx8 and BMP2 genes, which are considered as the master genes for mesenchymal stem cell proliferation and differentiation respectively, were recombined into a customized optogenetic control system. In the system, Lhx8 was constitutively expressed, while BMP2 together with shLhx8 expression was driven by blue light. Results: As expected, blue light induced BMP2 expression and inactivated Lhx8 expression in cells infected with the optogenetic control system. Optogenetic control of BMP2 and Lhx8 expression inversely regulates MSC fate in vitro. By animal study, we found that blue light could fine-tune the regeneration in vivo. Blue light illumination significantly promotes bone regeneration when the scaffold was loaded with MSCs infected with adeno-Lhx8, GI-Gal4DBD, LOV-VP16, and BMP2-shLhx8. Conclusions: Together, our study revealed that optogenetic control of the master genes for mesenchymal stem cell proliferation and differentiation would be such a candidate strategy for precise regenerative medicine.
Collapse
|
13
|
Lee JE, Neumann M, Duro DI, Schmid M. CRISPR-based tools for targeted transcriptional and epigenetic regulation in plants. PLoS One 2019; 14:e0222778. [PMID: 31557222 PMCID: PMC6762090 DOI: 10.1371/journal.pone.0222778] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/23/2019] [Indexed: 11/18/2022] Open
Abstract
Programmable gene regulators that can modulate the activity of selected targets in trans are a useful tool for probing and manipulating gene function. CRISPR technology provides a convenient method for gene targeting that can also be adapted for multiplexing and other modifications to enable strong regulation by a range of different effectors. We generated a vector toolbox for CRISPR/dCas9-based targeted gene regulation in plants, modified with the previously described MS2 system to amplify the strength of regulation, and using Golden Gate-based cloning to enable rapid vector assembly with a high degree of flexibility in the choice of promoters, effectors and targets. We tested the system using the floral regulator FLOWERING LOCUS T (FT) as a target and a range of different effector domains including the transcriptional activator VP64, the H3K27 acetyltransferase p300 and the H3K9 methyltransferase KRYPTONITE. When transformed into Arabidopsis thaliana, several of the constructs caused altered flowering time phenotypes that were associated with changes in FT expression and/or epigenetic status, thus demonstrating the effectiveness of the system. The MS2-CRISPR/dCas9 system can be used to modulate transcriptional activity and epigenetic status of specific target genes in plants, and provides a versatile tool that can easily be used with different targets and types of regulation for a range of applications.
Collapse
Affiliation(s)
- Joanne E. Lee
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Manuela Neumann
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, Tübingen, Germany
| | - Daniel Iglesias Duro
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Markus Schmid
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, Tübingen, Germany
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, People’s Republic of China
- * E-mail:
| |
Collapse
|
14
|
Aglawe SB, Barbadikar KM, Mangrauthia SK, Madhav MS. New breeding technique "genome editing" for crop improvement: applications, potentials and challenges. 3 Biotech 2018; 8:336. [PMID: 30073121 PMCID: PMC6056351 DOI: 10.1007/s13205-018-1355-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/14/2018] [Indexed: 12/26/2022] Open
Abstract
Crop improvement is a continuous process in agriculture which ensures ample supply of food, fodder and fiber to burgeoning world population. Despite tremendous success in plant breeding and transgenesis to improve the yield-related traits, there have been several limitations primarily with the specificity in genetic modifications and incompatibility of host species. Because of this, new breeding techniques (NBTs) are gaining worldwide attention for crop improvement programs. Among the NBTs, genome editing (GE) using site-directed nucleases (SDNs) is an important and potential technique that overcomes limitations associated with classical breeding and transgenesis. These SDNs specifically target a compatible region in the gene/genome. The meganucleases (MgN), zinc finger nucleases (ZFN), transcription activator-like effectors nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated endonuclease (Cas) are being successfully employed for GE. These can be used for desired or targeted modifications of the native endogenous gene(s) or targeted insertion of cis/trans elements in the genomes of recipient organisms. Applications of these techniques appear to be endless ever since their discovery and several modifications in original technologies have further brought precision and accuracy in these methods. In this review, we present an overview of GE using SDNs with an emphasis on CRISPR/Cas system, their advantages, limitations and also practical considerations while designing experiments have been discussed. The review also emphasizes on the possible applications of CRISPR for improving economic traits in crop plants.
Collapse
Affiliation(s)
- Supriya B. Aglawe
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| | - Kalyani M. Barbadikar
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| | - Satendra K. Mangrauthia
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| | - M. Sheshu Madhav
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| |
Collapse
|
15
|
Piatek AA, Lenaghan SC, Neal Stewart C. Advanced editing of the nuclear and plastid genomes in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 273:42-49. [PMID: 29907308 DOI: 10.1016/j.plantsci.2018.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 05/28/2023]
Abstract
Genome editing is a powerful suite of technologies utilized in basic and applied plant research. Both nuclear and plastid genomes have been genetically engineered to alter traits in plants. While the most frequent molecular outcome of gene editing has been knockouts resulting in a simple deletion of an endogenous protein of interest from the host's proteome, new genes have been added to plant genomes and, in several instances, the sequence of endogenous genes have been targeted for a few coding changes. Targeted plant characteristics for genome editing range from single gene targets for agronomic input traits to metabolic pathways to endow novel plant function. In this paper, we review the fundamental approaches to editing nuclear and plastid genomes in plants with an emphasis on those utilizing synthetic biology. The differences between the eukaryotic-type nuclear genome and the prokaryotic-type plastid genome (plastome) in plants has profound consequences in the approaches employed to transform, edit, select transformants, and indeed, nearly all aspects of genetic engineering procedures. Thus, we will discuss the two genomes targeted for editing in plants, the toolbox used to make edits, along with strategies for future editing approaches to transform crop production and sustainability. While CRISPR/Cas9 is the current method of choice in editing nuclear genomes, the plastome is typically edited using homologous recombination approaches. A particularly promising synthetic biology approach is to replace the endogenous plastome with a 'synplastome' that is computationally designed, and synthesized and assembled in the lab, then installed into chloroplasts. The editing strategies, transformation methods, characteristics of the novel plant also affect how the genetically engineered plant may be governed and regulated. Each of these components and final products of gene editing affect the future of biotechnology and farming.
Collapse
Affiliation(s)
- Agnieszka A Piatek
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Scott C Lenaghan
- Department of Food Science, University of Tennessee, Knoxville, TN, 37996, USA; Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
16
|
Cardi T, D’Agostino N, Tripodi P. Genetic Transformation and Genomic Resources for Next-Generation Precise Genome Engineering in Vegetable Crops. FRONTIERS IN PLANT SCIENCE 2017; 8:241. [PMID: 28275380 PMCID: PMC5319998 DOI: 10.3389/fpls.2017.00241] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/08/2017] [Indexed: 05/22/2023]
Abstract
In the frame of modern agriculture facing the predicted increase of population and general environmental changes, the securement of high quality food remains a major challenge to deal with. Vegetable crops include a large number of species, characterized by multiple geographical origins, large genetic variability and diverse reproductive features. Due to their nutritional value, they have an important place in human diet. In recent years, many crop genomes have been sequenced permitting the identification of genes and superior alleles associated with desirable traits. Furthermore, innovative biotechnological approaches allow to take a step forward towards the development of new improved cultivars harboring precise genome modifications. Sequence-based knowledge coupled with advanced biotechnologies is supporting the widespread application of new plant breeding techniques to enhance the success in modification and transfer of useful alleles into target varieties. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 system, zinc-finger nucleases, and transcription activator-like effector nucleases represent the main methods available for plant genome engineering through targeted modifications. Such technologies, however, require efficient transformation protocols as well as extensive genomic resources and accurate knowledge before they can be efficiently exploited in practical breeding programs. In this review, we revise the state of the art in relation to availability of such scientific and technological resources in various groups of vegetables, describe genome editing results obtained so far and discuss the implications for future applications.
Collapse
Affiliation(s)
- Teodoro Cardi
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA), Centro di ricerca per l’orticoltura, Pontecagnano FaianoItaly
| | | | | |
Collapse
|
17
|
Zaidi SSEA, Tashkandi M, Mansoor S, Mahfouz MM. Engineering Plant Immunity: Using CRISPR/Cas9 to Generate Virus Resistance. FRONTIERS IN PLANT SCIENCE 2016; 7:1673. [PMID: 27877187 PMCID: PMC5099147 DOI: 10.3389/fpls.2016.01673] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/24/2016] [Indexed: 05/19/2023]
Abstract
Plant viruses infect many economically important crops, including wheat, cotton, maize, cassava, and other vegetables. These viruses pose a serious threat to agriculture worldwide, as decreases in cropland area per capita may cause production to fall short of that required to feed the increasing world population. Under these circumstances, conventional strategies can fail to control rapidly evolving and emerging plant viruses. Genome-engineering strategies have recently emerged as promising tools to introduce desirable traits in many eukaryotic species, including plants. Among these genome engineering technologies, the CRISPR (clustered regularly interspaced palindromic repeats)/CRISPR-associated 9 (CRISPR/Cas9) system has received special interest because of its simplicity, efficiency, and reproducibility. Recent studies have used CRISPR/Cas9 to engineer virus resistance in plants, either by directly targeting and cleaving the viral genome, or by modifying the host plant genome to introduce viral immunity. Here, we briefly describe the biology of the CRISPR/Cas9 system and plant viruses, and how different genome engineering technologies have been used to target these viruses. We further describe the main findings from recent studies of CRISPR/Cas9-mediated viral interference and discuss how these findings can be applied to improve global agriculture. We conclude by pinpointing the gaps in our knowledge and the outstanding questions regarding CRISPR/Cas9-mediated viral immunity.
Collapse
Affiliation(s)
- Syed Shan-e-Ali Zaidi
- Laboratory for Genome Engineering, Division of Biological Sciences, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
- National Institute for Biotechnology and Genetic EngineeringFaisalabad, Pakistan
| | - Manal Tashkandi
- Laboratory for Genome Engineering, Division of Biological Sciences, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic EngineeringFaisalabad, Pakistan
| | - Magdy M. Mahfouz
- Laboratory for Genome Engineering, Division of Biological Sciences, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| |
Collapse
|