1
|
Shah M, Kumar S. Adaptation and characterization of Anatid herpesvirus 1 in different permissible cell lines. Biologicals 2021; 70:1-6. [PMID: 33744089 DOI: 10.1016/j.biologicals.2021.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/27/2021] [Accepted: 02/21/2021] [Indexed: 11/26/2022] Open
Abstract
Duck viral enteritis is an acute, contagious infection of Anatidae family members. The disease is caused by Anatid herpesvirus 1 (AnHV-1). The infection of AnHV-1 is controlled by vaccination to the flock with chick embryo adapted attenuated vaccine in developed countries. However, its economic impact in developing countries is substantial and there is a need to understand the cell culture spectrum of the virus to produce its vaccine on a mass scale. In the present study, the permissivity of AnHV-1 for different cells was analyzed. The AnHV-1 showed enhanced replication following its serial passage in CEF, DF-1, Vero, MDCK, and QT-35 cells. The characteristic cytopathic effect (CPE) of rounding and clumping of cells were observed in CEF, DF-1, Vero, and QT-35 cell lines. The infectivity and viral replication were highest in CEF, DF-1, Vero, and QT-35 cells. In contrast, the results suggested that MDCK cells are less permissive for AnHV-1 infection with negligible CPE and reduced viral replication. Heterologous cell culture systems other than chicken embryo fibroblasts to adapted live vaccine viruses will provide a system devoid of other avian infectious agents. Moreover, it can be used for the propagation and cultivation of AnHV-1 vaccine strain for developing cell culture-based vaccines with high titer and could be an economical alternative for the existing options.
Collapse
Affiliation(s)
- Manisha Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
2
|
Ntamo Y, Samodien E, Burger J, Muller N, Muller CJF, Chellan N. In vitro Characterization of Insulin-Producing β-Cell Spheroids. Front Cell Dev Biol 2021; 8:623889. [PMID: 33585464 PMCID: PMC7876261 DOI: 10.3389/fcell.2020.623889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
Over the years, immortalized rodent β-cell lines such as RIN, HIT, MIN, βTC, and INS-1 have been used to investigate pancreatic β-cell physiology using conventional two-dimensional (2D) culture techniques. However, physical and physiological limitations inherent to 2D cell culture necessitates confirmatory follow up studies using sentient animals. Three-dimensional (3D) culture models are gaining popularity for their recapitulation of key features of in vivo organ physiology, and thus could pose as potential surrogates for animal experiments. In this study, we aimed to develop and characterize a rat insulinoma INS-1 3D spheroid model to compare with 2D monolayers of the same cell line. Ultrastructural verification was done by transmission electron microscopy and toluidine blue staining, which showed that both 2D monolayers and 3D spheroids contained highly granulated cells with ultrastructural features synonymous with mature pancreatic β-cells, with increased prominence of these features observed in 3D spheroids. Viability, as assessed by cellular ATP quantification, size profiling and glucose utilization, showed that our spheroids remained viable for the experimental period of 30 days, compared to the limiting 5-day passage period of INS-1 monolayers. In fact, increasing ATP content together with spheroid size was observed over time, without adverse changes in glucose utilization. Additionally, β-cell function, assessed by determining insulin and amylin secretion, showed that the 3D spheroids retained glucose sensing and insulin secretory capability, that was more acute when compared to 2D monolayer cultures. Thus, we were able to successfully demonstrate that our in vitro INS-1 β-cell 3D spheroid model exhibits in vivo tissue-like structural features with extended viability and lifespan. This offers enhanced predictive capacity of the model in the study of metabolic disease, β-cell pathophysiology and the potential treatment thereof.
Collapse
Affiliation(s)
- Yonela Ntamo
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa.,Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa, South Africa
| | - Ebrahim Samodien
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
| | - Joleen Burger
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa.,Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nolan Muller
- National Health Laboratory Service, Anatomical Pathology, Tygerberg Hospital, Cape Town, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa.,Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa, South Africa.,Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nireshni Chellan
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa.,Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
3
|
Lee J, Choi JH. Deciphering Macrophage Phenotypes upon Lipid Uptake and Atherosclerosis. Immune Netw 2020; 20:e22. [PMID: 32655970 PMCID: PMC7327152 DOI: 10.4110/in.2020.20.e22] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 02/08/2023] Open
Abstract
In the progression of atherosclerosis, macrophages are the key immune cells for foam cell formation. During hyperlipidemic condition, phagocytic cells such as monocytes and macrophages uptake oxidized low-density lipoproteins (oxLDLs) accumulated in subintimal space, and lipid droplets are accumulated in their cytosols. In this review, we discussed the characteristics and phenotypic changes of macrophages in atherosclerosis and the effect of cytosolic lipid accumulation on macrophage phenotype. Due to macrophage plasticity, the inflammatory phenotypes triggered by oxLDL can be re-programmed by cytosolic lipid accumulation, showing downregulation of NF-κB activation followed by activation of anti-inflammatory genes, leading to tissue repair and homeostasis. We also discuss about various in vivo and in vitro models for atherosclerosis research and next generation sequencing technologies for foam cell gene expression profiling. Analysis of the phenotypic changes of macrophages during the progression of atherosclerosis with adequate approach may lead to exact understandings of the cellular mechanisms and hint therapeutic targets for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jihye Lee
- Department of Life Science, College of Natural Sciences, Research Institute of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Jae-Hoon Choi
- Department of Life Science, College of Natural Sciences, Research Institute of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
4
|
Bürgi N, Josi C, Bürki S, Schweizer M, Pilo P. Mycoplasma bovis co-infection with bovine viral diarrhea virus in bovine macrophages. Vet Res 2018; 49:2. [PMID: 29316971 PMCID: PMC5761114 DOI: 10.1186/s13567-017-0499-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 12/14/2017] [Indexed: 01/17/2023] Open
Abstract
Several studies suggest that synergisms between Mycoplasma bovis and other microorganisms might exacerbate disease outcome of bovine mycoplasmosis. Screening several bovine cell types to assess their potential use as in vitro infection models for M. bovis, it was observed that a widely used cell line of bovine macrophages (Bomac cells) is in fact persistently infected with bovine viral diarrhea virus (BVDV). The cell line was first cured of this virus allowing comparative studies between both cell lines. Subsequently, uptake and co-culture of two M. bovis strains of different clonal complexes with Bomac cells contaminated with BVDV and in BVDV-free Bomac cells were assessed. Additionally, cell viability, cytotoxicity and induction of apoptosis after infection with M. bovis were evaluated. No differences in the levels of uptake and growth in co-culture were observed between the two Bomac cell types and both M. bovis strains. Cytotoxicity was increased after infection of BVDV-free cells with one of the two strains, while apoptotic cell death was slightly induced by this strain in both cell lines. Overall, the presence or absence of BVDV in Bomac cells did not grossly change the parameters tested upon infection with M. bovis. Nevertheless, this cell model is very useful when studying viral co-infections with bacteria and could also be used for multiple co-infections. Considering the broad contamination of cell cultures with BVDV, careful screening for this virus should routinely be performed as its presence might be relevant depending on the molecular mechanisms being investigated.
Collapse
Affiliation(s)
- Nina Bürgi
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Laenggass-Str. 122, 3001, Bern, Switzerland
| | - Christoph Josi
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Laenggass-Str. 122, 3001, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sibylle Bürki
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Laenggass-Str. 122, 3001, Bern, Switzerland
| | - Matthias Schweizer
- Institute of Virology and Immunology, Federal Food Safety and Veterinary Office (FSVO) and Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Laenggass-Str. 122, 3001, Bern, Switzerland
| | - Paola Pilo
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Laenggass-Str. 122, 3001, Bern, Switzerland.
| |
Collapse
|
5
|
CRISPR/Cas9-mediated reversibly immortalized mouse bone marrow stromal stem cells (BMSCs) retain multipotent features of mesenchymal stem cells (MSCs). Oncotarget 2017; 8:111847-111865. [PMID: 29340096 PMCID: PMC5762364 DOI: 10.18632/oncotarget.22915] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells that can undergo self-renewal and differentiate into multi-lineages. Bone marrow stromal stem cells (BMSCs) represent one of the most commonly-used MSCs. In order to overcome the technical challenge of maintaining primary BMSCs in long-term culture, here we seek to establish reversibly immortalized mouse BMSCs (imBMSCs). By exploiting CRISPR/Cas9-based homology-directed-repair (HDR) mechanism, we target SV40T to mouse Rosa26 locus and efficiently immortalize mouse BMSCs (i.e., imBMSCs). We also immortalize BMSCs with retroviral vector SSR #41 and establish imBMSC41 as a control line. Both imBMSCs and imBMSC41 exhibit long-term proliferative capability although imBMSC41 cells have a higher proliferation rate. SV40T mRNA expression is 130% higher in imBMSC41 than that in imBMSCs. However, FLP expression leads to 86% reduction of SV40T expression in imBMSCs, compared with 63% in imBMSC41 cells. Quantitative genomic PCR analysis indicates that the average copy number of SV40T and hygromycin is 1.05 for imBMSCs and 2.07 for imBMSC41, respectively. Moreover, FLP expression removes 92% of SV40T in imBMSCs at the genome DNA level, compared with 58% of that in imBMSC41 cells, indicating CRISPR/Cas9 HDR-mediated immortalization of BMSCs can be more effectively reversed than that of retrovirus-mediated random integrations. Nonetheless, both imBMSCs and imBMSC41 lines express MSC markers and are highly responsive to BMP9-induced osteogenic, chondrogenic and adipogenic differentiation in vitro and in vivo. Thus, the engineered imBMSCs can be used as a promising alternative source of primary MSCs for basic and translational research in the fields of MSC biology and regenerative medicine.
Collapse
|
6
|
Puthumana J, Prabhakaran P, Philip R, Singh ISB. Attempts on producing lymphoid cell line from Penaeus monodon by induction with SV40-T and 12S EIA oncogenes. FISH & SHELLFISH IMMUNOLOGY 2015; 47:655-663. [PMID: 26279116 DOI: 10.1016/j.fsi.2015.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 08/08/2015] [Accepted: 08/12/2015] [Indexed: 06/04/2023]
Abstract
In an attempt of in vitro transformation, transfection mediated expression of Simian virus-40 (T) antigen (SV40-T) and transduction mediated expression of Adenovirus type 12 early region 1A (12S E1A) oncogene were performed in Penaeus monodon lymphoid cells. pSV3-neo vector encoding SV40-T oncogene and a recombinant baculovirus BacP2-12S E1A-GFP encoding 12S E1A oncogene under the control of hybrid promoters were used. Electroporation and lipofection mediated transformation of SV40-T in lymphoid cells confirmed the transgene expression by phenotypic variation and the expression of GFP in co-transfection experiment. The cells transfected by lipofection (≥ 5%) survived for 14 days with lower toxicity (30%), whilst on electroporation, most of the cells succumbed to death (60%) and survived cells lived up to 7 days. Transduction efficiency in primary lymphoid cells was more than 80% within 14 days of post-transduction, however, an incubation period of 7 days post-transduction was observed without detectable expression of 12S E1A. High level of oncogenic 12S E1A expression were observed after 14 day post-transduction and the proliferating cells survived for more than 90 days with GFP expression, however, without in vitro transformation and immortalization. The study put forth the requirement of transduction mediated 'specific' oncogene expression along with telomerase activation and epigenetic induction for the immortalization and establishment of shrimp cell line.
Collapse
Affiliation(s)
- Jayesh Puthumana
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala 682016, India; Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala 682016, India.
| | - Priyaja Prabhakaran
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala 682016, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala 682016, India
| | - I S Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala 682016, India.
| |
Collapse
|
7
|
Genzel Y. Designing cell lines for viral vaccine production: Where do we stand? Biotechnol J 2015; 10:728-40. [PMID: 25903999 DOI: 10.1002/biot.201400388] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/24/2015] [Accepted: 03/31/2015] [Indexed: 12/11/2022]
Abstract
Established animal cells, such as Vero, Madin Darby canine kidney (MDCK) or chicken embryo fibroblasts (CEFs), are still the main cell lines used for viral vaccine production, although new "designer cells" have been available for some years. These designer cell lines were specifically developed as a cell substrate for one application and are well characterized. Later screening for other possible applications widened the product range. These cells grow in suspension in chemically defined media under controlled conditions and can be used for up to 100 passages. Scale-up is easier and current process options allow cultivation in disposable bioreactors at cell concentrations higher than 1 × 10(7) cells/mL. This review covers the limitations of established cell lines and discusses the requirements and screening options for new host cells. Currently available designer cells for viral vaccine production (PER.C6, CAP, AGE1.CR, EB66 cells), together with other new cell lines (PBS-1, QOR/2E11, SogE, MFF-8C1 cells) that were recently described as possible cell substrates are presented. Using current process knowledge and cell line development tools, future upstream processing could resemble today's Chinese hamster ovary (CHO) cell processes for monoclonal antibody production: small scale bioreactors (disposable) in perfusion or fed-batch mode with cell concentrations above 1 × 10(8) cells/mL.
Collapse
Affiliation(s)
- Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| |
Collapse
|
8
|
Abstract
Cell lines are often used in place of primary cells to study biological processes. However, care must be taken when interpreting the results as cell lines do not always accurately replicate the primary cells. In this article, we will briefly talk about advantages and disadvantages of cell lines and then discuss results using the mouse Sertoli cell line, MSC-1, compared with primary mouse Sertoli cells. MSC-1 cells resemble Sertoli cells morphologically and possess several biochemical markers associated with Sertoli cells. Studies have demonstrated that the function and regulation of retinoic acid receptor α (RARα) is similar between MSC-1 and rat Sertoli cells. However, MSC-1 cells lack some of the immune privilege properties associated with primary Sertoli cells, including survival in animals with a fully functional immune system. Therefore, it has to be kept in mind that cell lines do not behave identically with primary cells and should not be used to replace primary cells. In order to strengthen the findings, key control experiments using primary cells should always be performed.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Department of Cell Biology and Biochemistry; Texas Tech University Health Sciences Center; Lubbock, TX USA
| | | |
Collapse
|
9
|
Claydon K, Owens L. Attempts at immortalization of crustacean primary cell cultures using human cancer genes. In Vitro Cell Dev Biol Anim 2008; 44:451-7. [DOI: 10.1007/s11626-008-9141-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 08/25/2008] [Indexed: 11/29/2022]
|
10
|
Fitzgerald U, Hettle S, MacDonald C, McLean JS. Umbilical cord endothelial cells expressing large T antigen: comparison with primary cultures and effect of cell age. In Vitro Cell Dev Biol Anim 2000; 36:222-7. [PMID: 10852346 DOI: 10.1290/1071-2690(2000)036<0222:ucecel>2.0.co;2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A number of human endothelial cell lines from umbilical cord cells (HUVECs) have been generated by transfection with SV40 large T and small t antigen sequences. Comparison of these lines with primary cultures of HUVECs has been carried out by monitoring the expression of a number of endothelial cell markers with specific regard to cell age. The secreted levels of the protein plasminogen activator inhibitor (PAI) was found to be significantly reduced in SV40-transfected cells when compared to untransfected controls. Tissue plasminogen activator (tPA) and urokinase (uPA) levels were unchanged. As cells entered crisis, there was a rapid and significant increase in the levels of tPA, uPA, and PAl and this was observed for all clones screened. The endothelial cell marker von Willebrand Factor (vWF) was found intracellularly and was also secreted into the medium. The levels were not altered between transfected and untransfected cells. Angiotensin converting enzyme (ACE) activity was maintained in cell lines at levels found in nonimmortalized HUVECs. Both isoforms (alpha and beta) of IL-1 (interleukin-1) increased as cells approached crisis, and the presence of these cytokines may be responsible for the increased levels of tPA, PAI, and uPA. With one exception, the ability of the transfected cells to produce prostacyclin (PGI2) was lost by all clones.
Collapse
Affiliation(s)
- U Fitzgerald
- Departmernt of Biological Sciences. University of Paisley, Scotland
| | | | | | | |
Collapse
|
11
|
Kreuzburg-Duffy UC, MacDonald C. Establishment and characterization of murine macrophage-like cell lines following transformation with simian virus 40 DNA deleted at the origin of replication. J Immunol Methods 1994; 174:33-51. [PMID: 8083536 DOI: 10.1016/0022-1759(94)90008-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Differentiated mammalian cell lines can be established by introducing viral oncogenes into primary cells. Such lines can retain their original specialised functions while being adapted to prolonged life in culture; but most transformed cell lines obtained in this way characteristically show altered properties compared with the primary cells. The result of these changes is that transformed cell lines no longer provide a good model of the original tissue, and indeed often resemble other transformed lines more than the initial cell type. In our laboratory three murine peritoneal macrophage-like cell lines have been isolated by transforming primary cells with SV40 origin-deleted DNA. These lines have been in continuous culture for approximately 1 year and have been shown to express many macrophage-specific properties throughout this time, including Fc receptors and staining for non-specific esterase. The cell lines phagocytosed IgG-coated particles, they were positive for the murine macrophage-specific marker F4/80 and they showed antigen-presentation function. Lysozyme, acid phosphatase, plasminogen activator, collagenase, prostaglandin E2 and 5'-nucleotidase activities have also been detected in these lines. In this paper the method of DNA transformation will be described as well as some of the assays used for the characterization of the three immortalized cell lines.
Collapse
|
12
|
Mosser DD, Massie B. Genetically engineering mammalian cell lines for increased viability and productivity. Biotechnol Adv 1994; 12:253-77. [PMID: 14545894 DOI: 10.1016/0734-9750(94)90013-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The generation of new host cell lines for the production of foreign proteins can be achieved by cell engineering. This approach can be used to enhance the cell's ability to produce proteins that are properly processed and secreted at elevated levels and consequently can increase the overall productivity of an expression system. One potential target for cell engineering is the modification of the cell's protein folding capacity. The appropriate folding, assembly, localization and secretion of newly synthesized proteins is dependent upon the action of a group of proteins known as molecular chaperones. Improving the host cell's chaperoning capacity might increase the yield of properly folded recombinant proteins by preventing the formation of insoluble aggregates. Another potentially beneficial cell engineering goal is the inhibition of physiological cell death. The productivity of genetically engineered cells is dependent upon the maintenance of high levels of cell viability throughout the bioprocess period. Fluctuations in a cell's environment can trigger a deliberate form of cell death known as apoptosis. The proteins that mediate this self-destruction are currently being characterized. Regulating the expression of these death genes by cellular engineering could limit the loss of productivity that results from the physiological death of the recombinant cell line.
Collapse
Affiliation(s)
- D D Mosser
- Biotechnology Research Institute, National Research Council of Canada, Montréal, Québec, Canada
| | | |
Collapse
|
13
|
Hippenmeyer P, Highkin M. High level, stable production of recombinant proteins in mammalian cell culture using the herpesvirus VP16 transactivator. BIO/TECHNOLOGY (NATURE PUBLISHING COMPANY) 1993; 11:1037-41. [PMID: 7764072 DOI: 10.1038/nbt0993-1037] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have engineered mammalian cell lines to produce high levels of heterologous proteins by constructing a cell line that expresses the herpesvirus transactivator, VP16. Subsequent stable transfection with a gene of interest under control of a herpesvirus immediate early promoter led to a rapid isolation of cell lines producing between 1 and 20 micrograms of protein/million cells/24 hours. This high level expression is stable for at least five months.
Collapse
|
14
|
Abstract
The use of cultured mammalian cells for assessing potential new drugs and for basic biological research is increasing, since it facilitates the large-scale screening of candidate drugs and reduces the need for animal experimentation. In this review, the technology and tools required for producing cell lines of interest are described, and possible areas of research that will enhance the application of this rapidly expanding area of biotechnology are discussed.
Collapse
Affiliation(s)
- J S McLean
- ZENECA Pharmaceuticals, Alderley Park, Cheshire, UK
| |
Collapse
|
15
|
Robinson PS, Goochee CF. Kidney-specific enzyme expression by human kidney cell lines generated through oncogene transfection. J Cell Physiol 1991; 148:54-9. [PMID: 1677645 DOI: 10.1002/jcp.1041480107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The human kidney cell line 293 was generated by transfection of adenovirus DNA into normal human embryonic kidney (HEK) cells (Graham et al., 1977), whereas the human kidney cell lines ST-1i and STt-4i were generated by transfection of HEK cells with plasmids encoding SV40 viral oncogenes (Abcouwer et al., 1989). In this study, we examined kidney-specific enzyme activity levels in 293, ST-1i, and STt-4i cells to determine their ability to exhibit kidney-specific gene expression. Enzymes examined were leucine aminopeptidase (LAP), gamma-glutamyl transpeptidase (gamma-GTP), and the disaccharidases trehalase and maltase. Enzymatic activity levels were compared to three other kidney cell lines (MDCK, OK, and LLC-PK1) as well as to normal human embryonic kidney (HEK) cells and the human hepatoma cell line, Hep G2. Modulation of kidney-specific enzyme activities was assessed in response to several differentiation-inducing agents (adenosine, n-butyric acid, hexamethylene bisacetamide (HMBA), dimethyl sulfoxide (DMSO), N,N'-dimethylformamide (DMF), isobutyl methyl xanthine (IBMX), di butyryl cAMP, and retinoic acid). ST-1i and STt-4i exhibit elevated levels of LAP, gamma-GTP, trehalase, and maltase, consistent with their kidney cell origin, whereas 293 cells exhibit elevated levels of just gamma-GTP and maltase. Maltase and gamma-GTP enzyme activities in ST-1i and STt-4i cells were very responsive to the various inducing agents; 293 cells were less responsive at the inducer concentrations examined. None of the three human cell lines formed domes under any of the experimental conditions. In summary, ST-1i and STt-4i are comparable to normal HEK cells in expression of kidney-specific enzymes and in responsiveness to differentiation-inducing agents, in spite of continued expression of SV40 oncogenes.
Collapse
Affiliation(s)
- P S Robinson
- Department of Chemical Engineering, University of Houston, Texas 77004
| | | |
Collapse
|