1
|
Dimovski AM, Fanson KV, Edwards AM, Robert KA. Short- and long-wavelength lights disrupt endocrine signalling but not immune function in a nocturnal marsupial. CONSERVATION PHYSIOLOGY 2025; 13:coae092. [PMID: 40182072 PMCID: PMC11964822 DOI: 10.1093/conphys/coae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/08/2024] [Accepted: 02/23/2025] [Indexed: 04/05/2025]
Abstract
Natural light-dark cycles are responsible for synchronizing an animal's circadian clock with environmental conditions. Consequently, the endocrine system is vulnerable to changes in the external light environment, particularly short-wavelength blue light. Artificial light at night drastically changes the night-time environment by masking natural light cycles and disrupting well-established biological rhythms. The introduction of blue-rich lighting, such as white light-emitting diodes (LEDs), may increase the biological effects of light at night on wildlife. However, flexibility in the spectral composition of LED lighting presents options for wildlife-sensitive lighting, such as long-wavelength amber LEDs. Here we examine the effect of light spectra on circadian physiology in a nocturnal marsupial. Specifically, we investigate the effect of short-wavelength white (standard urban lighting) and long-wavelength amber LEDs (proposed wildlife-sensitive lighting) on circadian hormones and cell-mediated immunity in the Krefft's glider (Petaurus notatus). Melatonin and glucocorticoid secretion were disrupted following exposure to both short-wavelength white and long-wavelength amber LEDs. Both LEDs suppressed melatonin, whilst glucocorticoid secretion was suppressed under amber LEDs and increased under white LEDs. Despite this disturbance we did not detect any effect of light treatment on cell-mediated immune response. Our findings offer a novel contribution to understanding the physiological impacts of light at night on wildlife. We also provide evidence that long-wavelength amber LEDs can disrupt physiology and are not a wildlife-sensitive lighting option for all species.
Collapse
Affiliation(s)
- Alicia M Dimovski
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine & Environment, La Trobe University, Bundoora, Victoria 3086, Australia
- Research Centre for Future Landscapes, School of Agriculture, Biomedicine & Environment, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Kerry V Fanson
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine & Environment, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Amy M Edwards
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine & Environment, La Trobe University, Bundoora, Victoria 3086, Australia
- Pest and Weeds Unit, New South Wales National Parks and Wildlife Service, Dubbo, New South Wales 2830, Australia
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2350, Australia
| | - Kylie A Robert
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine & Environment, La Trobe University, Bundoora, Victoria 3086, Australia
- Research Centre for Future Landscapes, School of Agriculture, Biomedicine & Environment, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
2
|
Liu JA, Walker WH, Meléndez-Fernández OH, Bumgarner JR, Zhang N, Walton JC, Meares GP, DeVries AC, Nelson RJ. Dim light at night shifts microglia to a pro-inflammatory state after cerebral ischemia, altering stroke outcome in mice. Exp Neurol 2024; 377:114796. [PMID: 38677449 PMCID: PMC11404552 DOI: 10.1016/j.expneurol.2024.114796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Circadian rhythms are endogenous biological cycles that regulate physiology and behavior and are set to precisely 24-h by light exposure. Light at night (LAN) dysregulates physiology and function including immune response; a critical component that contributes to stroke pathophysiological progression of neuronal injury and may impair recovery from injury. The goal of this study is to explore the effects of dim LAN (dLAN) in a murine model of ischemic stroke to assess how nighttime lighting from hospital settings can affect stroke outcome. Further, this study sought to identify mechanisms underlying pathophysiological changes to immune response after circadian disruption. Male and female adult Swiss Webster (CFW) mice were subjected to transient or permanent focal cerebral ischemia, then were subsequently placed into either dark night conditions (LD) or one night of dLAN (5 lx). 24 h post-stroke, sensorimotor impairments and infarct sizes were quantified. A single night of dLAN following MCAO increased infarct size and sensorimotor deficits across both sexes and reduced survival in males after 24 h. Flow cytometry was performed to assess microglial phenotypes after MCAO, and revealed that dLAN altered the percentage of microglia that express pro-inflammatory markers (MHC II+ and IL-6) and microglia that express CD206 and IL-10 that likely contributed to poor ischemic outcomes. Following these results, microglia were reduced in the brain using Plexxikon 5622 (PLX 5622) a CSFR1 inhibitor, then the mice received an MCAO and were exposed to LD or dLAN conditions for 24 h. Microglial depletion by PLX5622 resulted in infarct sizes that were comparable between lighting conditions. This study provides supporting evidence that environmental lighting exacerbates ischemic injury and post-stroke mortality by a biological mechanism that exposure to dLAN causes a fundamental shift of activated microglial phenotypes from beneficial to detrimental at an early time point after stroke, resulting in irreversible neuronal death.
Collapse
Affiliation(s)
- Jennifer A Liu
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States.
| | - William H Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - O Hecmarie Meléndez-Fernández
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Jacob R Bumgarner
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Ning Zhang
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - James C Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Gordon P Meares
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States; Department of Microbiology, Immunology, & Cell Biology, West Virginia University, Morgantown, WV, United States
| | - A Courtney DeVries
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States; Department of Medicine, West Virginia University, Morgantown, WV, United States; West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, United States
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
3
|
Guan Q, Wang Z, Cao J, Dong Y, Tang S, Chen Y. Melatonin restores hepatic lipid metabolic homeostasis disrupted by blue light at night in high-fat diet-fed mice. J Pineal Res 2024; 76:e12963. [PMID: 38779971 DOI: 10.1111/jpi.12963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Artificial light at night (ALAN) is an emerging environmental pollutant that threatens public health. Recently, ALAN has been identified as a risk factor for obesity; however, the role of ALAN and its light wavelength in hepatic lipid metabolic homeostasis remains undetermined. We showed that chronic dim (~5 lx) ALAN (dLAN) exposure significantly promoted hepatic lipid accumulation in obese or diabetic mice, with the most severe effect of blue light and little effect of green or red light. These metabolic phenotypes were attributed to blue rather than green or red dLAN interfering with hepatic lipid metabolism, especially lipogenesis and lipolysis. Further studies found that blue dLAN disrupted hepatic lipogenesis and lipolysis processes by inhibiting hepatic REV-ERBs. Mechanistically, feeding behavior mediated the regulation of dLAN on hepatic REV-ERBs. In addition, different effects of light wavelengths at night on liver REV-ERBs depended on the activation of the corticosterone (CORT)/glucocorticoid receptor (GR) axis. Blue dLAN could activate the CORT/GR axis significantly while other wavelengths could not. Notably, we demonstrated that exogenous melatonin could effectively inhibit hepatic lipid accumulation and restore the hepatic GR/REV-ERBs axis disrupted by blue dLAN. These findings demonstrate that dLAN promotes hepatic lipid accumulation in mice via a short-wavelength-dependent manner, and exogenous melatonin is a potential therapeutic approach. This study strengthens the relationship between ALAN and hepatic lipid metabolism and provides insights into directing ambient light.
Collapse
Affiliation(s)
- Qingyun Guan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, China
| | - Zixu Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, China
| | - Jing Cao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, China
| | - Yulan Dong
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, China
| | - Shusheng Tang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, China
| | - Yaoxing Chen
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, China
- Department of Nutrition and Health, China Agricultural University, Haidian, Beijing, China
| |
Collapse
|
4
|
Aldrich JC, Scheinfeld AR, Lee SE, Dusenbery KJ, Mahach KM, Van de Veire BC, Fonken LK, Gaudet AD. Effects of dim light at night in C57BL/6 J mice on recovery after spinal cord injury. Exp Neurol 2024; 375:114725. [PMID: 38365132 PMCID: PMC10981559 DOI: 10.1016/j.expneurol.2024.114725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/09/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Spinal cord injury (SCI) can cause long-lasting locomotor deficits, pain, and mood disorders. Anatomical and functional outcomes are exacerbated by inflammation after SCI, which causes secondary damage. One promising target after SCI is manipulating the circadian system, which optimizes biology and behavior for time of day - including neuroimmune responses and mood-related behaviors. Circadian disruption after SCI is likely worsened by a disruptive hospital environment, which typically includes dim light-at-night (dLAN). Here, we hypothesized that mice subjected to SCI, then placed in dLAN, would exhibit worsened locomotor deficits, pain-like behavior, and anxiety-depressive-like symptoms compared to mice maintained in light days with dark nights (LD). C57BL/6 J mice received sham surgery or moderate T9 contusion SCI, then were placed permanently in LD or dLAN. dLAN after SCI did not worsen locomotor deficits; rather, SCI-dLAN mice showed slight improvement in open-field locomotion at the final timepoint. Although dLAN did not alter SCI-induced heat hyperalgesia, SCI-dLAN mice exhibited an increase in mechanical allodynia at 13 days post-SCI compared to SCI-LD mice. SCI-LD and SCI-dLAN mice had similar outcomes using sucrose preference (depressive-like) and open-field (anxiety-like) tests. At 21 dpo, SCI-dLAN mice had reduced preference for a novel juvenile compared to SCI-LD, implying that dLAN combined with SCI may worsen this mood-related behavior. Finally, lesion size was similar between SCI-LD and SCI-dLAN mice. Therefore, newly placing C57BL/6 J mice in dLAN after SCI had modest effects on locomotor, pain-like, and mood-related behaviors. Future studies should consider whether clinically-relevant circadian disruptors, alone or in combination, could be ameliorated to enhance outcomes after SCI.
Collapse
Affiliation(s)
- John C Aldrich
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Ashley R Scheinfeld
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Sydney E Lee
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Kalina J Dusenbery
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Kathryn M Mahach
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Brigid C Van de Veire
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin
| | - Andrew D Gaudet
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin.
| |
Collapse
|
5
|
Molcan L, Babarikova K, Cvikova D, Kincelova N, Kubincova L, Mauer Sutovska H. Artificial light at night suppresses the day-night cardiovascular variability: evidence from humans and rats. Pflugers Arch 2024; 476:295-306. [PMID: 38177874 PMCID: PMC10847188 DOI: 10.1007/s00424-023-02901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
Artificial light at night (ALAN) affects most of the population. Through the retinohypothalamic tract, ALAN modulates the activity of the central circadian oscillator and, consequently, various physiological systems, including the cardiovascular one. We summarised the current knowledge about the effects of ALAN on the cardiovascular system in diurnal and nocturnal animals. Based on published data, ALAN reduces the day-night variability of the blood pressure and heart rate in diurnal and nocturnal animals by increasing the nocturnal values of cardiovascular variables in diurnal animals and decreasing them in nocturnal animals. The effects of ALAN on the cardiovascular system are mainly transmitted through the autonomic nervous system. ALAN is also considered a stress-inducing factor, as glucocorticoid and glucose level changes indicate. Moreover, in nocturnal rats, ALAN increases the pressure response to load. In addition, ALAN induces molecular changes in the heart and blood vessels. Changes in the cardiovascular system significantly depend on the duration of ALAN exposure. To some extent, alterations in physical activity can explain the changes observed in the cardiovascular system after ALAN exposure. Although ALAN acts differently on nocturnal and diurnal animals, we can conclude that both exhibit a weakened circadian coordination among physiological systems, which increases the risk of future cardiovascular complications and reduces the ability to anticipate stress.
Collapse
Affiliation(s)
- Lubos Molcan
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, Slovakia
| | - Katarina Babarikova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, Slovakia
| | - Diana Cvikova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, Slovakia
| | - Natalia Kincelova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, Slovakia
| | - Lenka Kubincova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, Slovakia
| | - Hana Mauer Sutovska
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, Slovakia.
| |
Collapse
|
6
|
Viljoen A, Oosthuizen MK. Dim light at night affects the locomotor activity of nocturnal African pygmy mice ( Mus minutoides) in an intensity-dependent manner. Proc Biol Sci 2023; 290:20230526. [PMID: 37072046 PMCID: PMC10113032 DOI: 10.1098/rspb.2023.0526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/27/2023] [Indexed: 04/20/2023] Open
Abstract
Rodents are integral components of ecosystems as they provide several important ecosystem services. Despite their importance as prey, pollinators and seed distributors, African rodents are largely understudied. The effect of anthropogenic changes such as artificial light at night extends past urban areas to peri-urban and rural habitats, and can have profound effects on entire ecosystems. We investigated the effect of dim light at night (dLAN) on the locomotor activity rhythms of the African pygmy mouse (Mus minutoides). Pygmy mice showed a dramatic, intensity-dependent reduction in their locomotor activity when subjected to dLAN, which was accompanied by a delay in the activity onset. We also considered masking responses with a dark pulse (DP) during the day and a light pulse at night. All animals became inactive in response to a light pulse during the night, whereas approximately half of the animals showed activity during a DP in the day. Our results suggest that the African pygmy mouse is highly sensitive to light and that their activity is strongly masked by light. In their natural environment, vegetation could shield pygmy mice against high light levels; however, other anthropogenic disturbances can alter the behaviour of these animals and could affect their survival.
Collapse
Affiliation(s)
- A. Viljoen
- Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa
| | - M. K. Oosthuizen
- Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa
- Mammal Research Institute, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
7
|
Jerigova V, Zeman M, Okuliarova M. Circadian Disruption and Consequences on Innate Immunity and Inflammatory Response. Int J Mol Sci 2022; 23:ijms232213722. [PMID: 36430199 PMCID: PMC9690954 DOI: 10.3390/ijms232213722] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Circadian rhythms control almost all aspects of physiology and behavior, allowing temporal synchrony of these processes between each other, as well as with the external environment. In the immune system, daily rhythms of leukocyte functions can determine the strength of the immune response, thereby regulating the efficiency of defense mechanisms to cope with infections or tissue injury. The natural light/dark cycle is the prominent synchronizing agent perceived by the circadian clock, but this role of light is highly compromised by irregular working schedules and unintentional exposure to artificial light at night (ALAN). The primary concern is disrupted circadian control of important physiological processes, underlying potential links to adverse health effects. Here, we first discuss the immune consequences of genetic circadian disruption induced by mutation or deletion of specific clock genes. Next, we evaluate experimental research into the effects of disruptive light/dark regimes, particularly light-phase shifts, dim ALAN, and constant light on the innate immune mechanisms under steady state and acute inflammation, and in the pathogenesis of common lifestyle diseases. We suggest that a better understanding of the mechanisms by which circadian disruption influences immune status can be of importance in the search for strategies to minimize the negative consequences of chronodisruption on health.
Collapse
|
8
|
Guan Q, Wang Z, Cao J, Dong Y, Chen Y. The role of light pollution in mammalian metabolic homeostasis and its potential interventions: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120045. [PMID: 36030956 DOI: 10.1016/j.envpol.2022.120045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Irregular or unnatural artificial light causes severe environmental stress on the survival and health of organisms, which is rapidly becoming a widespread new type of environmental pollution. A series of disruptive behaviors to body homeostasis brought about by light pollution, including metabolic abnormalities, are likely to be the result of circadian rhythm disturbances. Recently, the proposed role of light pollution in metabolic dysregulation has accelerated it into an emerging field. Hence, the regulatory role of light pollution in mammalian metabolic homeostasis is reviewed in this contribution. Light at night is the most widely affected type of light pollution, which disrupts metabolic homeostasis largely due to its disruption of daily food intake patterns, alterations of hormone levels such as melatonin and glucocorticoids, and changes in the rhythm of inflammatory factor production. Besides, light pollution impairs mammalian metabolic processes in an intensity-, photoperiod-, and wavelength-dependent manner, and is also affected by species, gender, and diets. Nevertheless, metabolic disorders triggered by light pollution are not irreversible to some extent. Potential interventions such as melatonin supplementation, recovery to the LD cycle, time-restricted feeding, voluntary exercise, wearing blue light-shied goggles, and bright morning light therapy open a bright avenue to prevent light pollution. This work will help strengthen the relationship between light information and metabolic homeostasis and provide new insights for the better prevention of metabolic disorders and light pollution.
Collapse
Affiliation(s)
- Qingyun Guan
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China; Department of Nutrition and Health, China Agricultural University, Haidian, Beijing 100193, China.
| |
Collapse
|
9
|
Liu JA, Meléndez-Fernández OH, Bumgarner JR, Nelson RJ. Effects of light pollution on photoperiod-driven seasonality. Horm Behav 2022; 141:105150. [PMID: 35304351 PMCID: PMC10137835 DOI: 10.1016/j.yhbeh.2022.105150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/23/2022]
Abstract
Changes to photoperiod (day length) occur in anticipation of seasonal environmental changes, altering physiology and behavior to maximize fitness. In order for photoperiod to be useful as a predictive factor of temperature or food availability, day and night must be distinct. The increasing prevalence of exposure to artificial light at night (ALAN) in both field and laboratory settings disrupts photoperiodic time measurement and may block development of appropriate seasonal adaptations. Here, we review the effects of ALAN as a disruptor of photoperiodic time measurement and season-specific adaptations, including reproduction, metabolism, immune function, and thermoregulation.
Collapse
Affiliation(s)
- Jennifer A Liu
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, West Virginia, USA.
| | | | - Jacob R Bumgarner
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, West Virginia, USA
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, West Virginia, USA
| |
Collapse
|
10
|
Light at night disrupts biological clocks, calendars, and immune function. Semin Immunopathol 2021; 44:165-173. [PMID: 34731290 PMCID: PMC8564795 DOI: 10.1007/s00281-021-00899-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/13/2021] [Indexed: 12/15/2022]
Abstract
Light at night is a pervasive problem in our society; over 80% of the world’s population experiences significant light pollution. Exacerbating this issue is the reality that artificially lit outdoor areas are growing by 2.2% per year and continuously lit areas brighten by 2.2% each year due to the rapid growths in population and urbanization. Furthermore, the increase in the prevalence of night shift work and smart device usage contributes to the inescapable nature of artificial light at night (ALAN). Although previously assumed to be innocuous, ALAN has deleterious effects on the circadian system and circadian-regulated physiology, particularly immune function. Due to the relevance of ALAN to the general population, it is important to understand its roles in disrupting immune function. This review presents a synopsis of the effects of ALAN on circadian clocks and immune function. We delineate the role of ALAN in altering clock gene expression and suppressing melatonin. We review the effects of light at night on inflammation and the innate and adaptive immune systems in various species to demonstrate the wide range of ALAN consequences. Finally, we propose future directions to provide further clarity and expansion of the field.
Collapse
|
11
|
Secondi J, Mondy N, Gippet JMW, Touzot M, Gardette V, Guillard L, Lengagne T. Artificial light at night alters activity, body mass, and corticosterone level in a tropical anuran. Behav Ecol 2021. [DOI: 10.1093/beheco/arab044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Photoperiod is a major factor regulating biological rhythms in animals and plants. At low latitudes, annual variation in daylength is low and species are expected to strongly rely on photic cues to reset their circadian clocks. A corollary is that individuals should be strongly affected by sudden changes in the photic regime as those generated by artificial light at night (ALAN). We tested this hypothesis in an anuran in Costa Rica (10°N). Using an outdoor experimental design, we exposed adult cane toads Rhinella marina, a broadly distributed tropical anuran species to two ALAN intensities (0.04 and 5 lx). Locomotor activity was reduced at the lowest intensity, and the activity pattern shifted from crepuscular to nocturnal. Contrary to humans and mice in which ALAN favor obesity, toads from the two exposed groups did not gain mass whereas controls did. Corticosterone was reduced at the highest intensity, a possible consequence of the reduced activity of toads or the altered regulation of their circadian pattern. Thus, the behavioral and physiological disruption that we observed supports the hypothesis of the strong reliance on photic cues to regulate circadian rhythms and control homeostasis in this intertropical anuran. Furthermore, our results suggest that the negative effects of ALAN on physiology, in particular body mass regulation, may differ between vertebrate groups, thus preventing anticipated generalization before more comparative studies have been carried out. We stress the importance of considering the impact of the changing nocturnal environment in the intertropical zone which host the largest fraction of biodiversity.
Collapse
Affiliation(s)
- Jean Secondi
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622, Villeurbanne,France
- Faculté des Sciences, Université d’Angers, 49045 Angers, France
| | - Nathalie Mondy
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622, Villeurbanne,France
| | - Jérôme Marcel Walter Gippet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622, Villeurbanne,France
- Department of Ecology and Evolution, University of Lausanne, Le Biophore, UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Morgane Touzot
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622, Villeurbanne,France
| | - Vanessa Gardette
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622, Villeurbanne,France
| | - Ludovic Guillard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622, Villeurbanne,France
| | - Thierry Lengagne
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622, Villeurbanne,France
| |
Collapse
|
12
|
Mendoza J. Nighttime Light Hurts Mammalian Physiology: What Diurnal Rodent Models Are Telling Us. Clocks Sleep 2021; 3:236-250. [PMID: 33915800 PMCID: PMC8167723 DOI: 10.3390/clockssleep3020014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/16/2021] [Accepted: 03/15/2021] [Indexed: 01/24/2023] Open
Abstract
Natural sunlight permits organisms to synchronize their physiology to the external world. However, in current times, natural sunlight has been replaced by artificial light in both day and nighttime. While in the daytime, indoor artificial light is of lower intensity than natural sunlight, leading to a weak entrainment signal for our internal biological clock, at night the exposure to artificial light perturbs the body clock and sleep. Although electric light at night allows us "to live in darkness", our current lifestyle facilitates nighttime exposure to light by the use, or abuse, of electronic devices (e.g., smartphones). The chronic exposure to light at nighttime has been correlated to mood alterations, metabolic dysfunctions, and poor cognition. To decipher the brain mechanisms underlying these alterations, fundamental research has been conducted using animal models, principally of nocturnal nature (e.g., mice). Nevertheless, because of the diurnal nature of human physiology, it is also important to find and propose diurnal animal models for the study of the light effects in circadian biology. The present review provides an overview of the effects of light at nighttime on physiology and behavior in diurnal mammals, including humans. Knowing how the brain reacts to artificial light exposure, using diurnal rodent models, is fundamental for the development of new strategies in human health based in circadian biology.
Collapse
Affiliation(s)
- Jorge Mendoza
- Institute of Cellular and Integrative Neuroscience CNRS UPR3212, University of Strasburg, 8 allée du Général Rouvillois, 67000 Strasbourg, France
| |
Collapse
|
13
|
Bumgarner JR, Nelson RJ. Light at Night and Disrupted Circadian Rhythms Alter Physiology and Behavior. Integr Comp Biol 2021; 61:1160-1169. [PMID: 33787878 DOI: 10.1093/icb/icab017] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Life on earth has evolved during the past several billion years under relatively bright days and dark nights. Virtually, all organisms on the planet display an internal representation of the solar days in the form of circadian rhythms driven by biological clocks. Nearly every aspect of physiology and behavior is mediated by these internal clocks. The widespread adoption of electric lights during the past century has exposed animals, including humans, to significant light at night for the first time in our evolutionary history. Importantly, endogenous circadian clocks depend on light for synchronization with the external daily environment. Thus, light at night can derange temporal adaptations. Indeed, disruption of natural light-dark cycles results in several physiological and behavioral changes. In this review, we highlight recent evidence demonstrating how light at night exposure can have serious implications for adaptive physiology and behavior, including immune, endocrine, and metabolic function, as well as reproductive, foraging, and migratory behavior. Lastly, strategies to mitigate the consequences of light at night on behavior and physiology will be considered.
Collapse
Affiliation(s)
- Jacob R Bumgarner
- Department of Neuroscience Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505 USA
| | - Randy J Nelson
- Department of Neuroscience Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505 USA
| |
Collapse
|
14
|
A meta-analysis of biological impacts of artificial light at night. Nat Ecol Evol 2020; 5:74-81. [DOI: 10.1038/s41559-020-01322-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 08/28/2020] [Indexed: 01/11/2023]
|
15
|
Mishra I, Knerr RM, Stewart AA, Payette WI, Richter MM, Ashley NT. Light at night disrupts diel patterns of cytokine gene expression and endocrine profiles in zebra finch (Taeniopygia guttata). Sci Rep 2019; 9:15833. [PMID: 31676761 PMCID: PMC6825233 DOI: 10.1038/s41598-019-51791-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 10/08/2019] [Indexed: 11/22/2022] Open
Abstract
Increased exposure to light pollution perturbs physiological processes through misalignment of daily rhythms at the cellular and tissue levels. Effects of artificial light-at-night (ALAN) on diel properties of immunity are currently unknown. We therefore tested the effects of ALAN on diel patterns of cytokine gene expression, as well as key hormones involved with the regulation of immunity, in zebra finches (Taeniopygia guttata). Circulating melatonin and corticosterone, and mRNA expression levels of pro- (IL-1β, IL-6) and anti-inflammatory (IL-10) cytokines were measured at six time points across 24-h day in brain (nidopallium, hippocampus, and hypothalamus) and peripheral tissues (liver, spleen, and fat) of zebra finches exposed to 12 h light:12 h darkness (LD), dim light-at-night (DLAN) or constant bright light (LLbright). Melatonin and corticosterone concentrations were significantly rhythmic under LD, but not under LLbright and DLAN. Genes coding for cytokines showed tissue-specific diurnal rhythms under LD and were lost with exposure to LLbright, except IL-6 in hypothalamus and liver. In comparison to LLbright, effects of DLAN were less adverse with persistence of some diurnal rhythms, albeit with significant waveform alterations. These results underscore the circadian regulation of biosynthesis of immune effectors and imply the susceptibility of daily immune and endocrine patterns to ALAN.
Collapse
Affiliation(s)
- Ila Mishra
- Department of Biology, Western Kentucky University, Bowling Green, KY, USA
| | - Reinhard M Knerr
- Department of Biology, Western Kentucky University, Bowling Green, KY, USA
| | | | - Wesley I Payette
- Department of Biology, Western Kentucky University, Bowling Green, KY, USA
| | - Melanie M Richter
- Department of Biology, Western Kentucky University, Bowling Green, KY, USA
| | - Noah T Ashley
- Department of Biology, Western Kentucky University, Bowling Green, KY, USA.
| |
Collapse
|
16
|
Verra DM, Sajdak BS, Merriman DK, Hicks D. Diurnal rodents as pertinent animal models of human retinal physiology and pathology. Prog Retin Eye Res 2019; 74:100776. [PMID: 31499165 DOI: 10.1016/j.preteyeres.2019.100776] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/27/2019] [Accepted: 08/31/2019] [Indexed: 12/12/2022]
Abstract
This presentation will survey the retinal architecture, advantages, and limitations of several lesser-known rodent species that provide a useful diurnal complement to rats and mice. These diurnal rodents also possess unusually cone-rich photoreceptor mosaics that facilitate the study of cone cells and pathways. Species to be presented include principally the Sudanian Unstriped Grass Rat and Nile Rat (Arvicanthis spp.), the Fat Sand Rat (Psammomys obesus), the degu (Octodon degus) and the 13-lined ground squirrel (Ictidomys tridecemlineatus). The retina and optic nerve in several of these species demonstrate unusual resilience in the face of neuronal injury, itself an interesting phenomenon with potential translational value.
Collapse
Affiliation(s)
- Daniela M Verra
- Department of Neurobiology of Rhythms, Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS UPR 3212, Strasbourg, France
| | | | - Dana K Merriman
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - David Hicks
- Department of Neurobiology of Rhythms, Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS UPR 3212, Strasbourg, France.
| |
Collapse
|
17
|
Griepentrog JE, Zhang X, Lewis AJ, Gianfrate G, Labiner HE, Zou B, Xiong Z, Lee JS, Rosengart MR. Frontline Science: Rev-Erbα links blue light with enhanced bacterial clearance and improved survival in murine Klebsiella pneumoniae pneumonia. J Leukoc Biol 2019; 107:11-25. [PMID: 31379019 DOI: 10.1002/jlb.4hi0519-155r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 12/24/2022] Open
Abstract
The wavelength of light is a critical determinant of light's capacity to entrain adaptive biological mechanisms, such as enhanced immune surveillance, that precede and prepare us for the active circadian day, a time when the risk of encountering pathogen is highest. Light rich in the shorter wavelength visible blue spectrum maximally entrains these circadian rhythms. We hypothesized that exposure to blue light during sepsis will augment immunity and improve outcome. Using a clinically relevant Klebsiella pneumoniae acute lower respiratory tract infection model, we show that blue spectrum light shifts autonomic tone toward parasympathetic predominance and enhances immune competence, as characterized by accelerated pathogen clearance that is accompanied by reduced alveolar neutrophil influx, inflammation, and improved survival. Blue light functioned through an optic-cholinergic pathway and expansion of splenic Ccr2+ monocytes to increase control of the infection and improve survival. The "keystone" mediating these effects is the circadian clock protein Rev-Erbα, and biochemical activation with Rev-Erbα agonist SR9009 enhanced mononuclear cell phagocytosis in vitro and recapitulated the enhanced pathogen elimination in vivo observed with blue light. These findings underscore the potential therapeutic value of blue light and modulating Rev-Erbα to enhance host immunity against infection.
Collapse
Affiliation(s)
- John E Griepentrog
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xianghong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthony J Lewis
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Hanna E Labiner
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Baobo Zou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zeyu Xiong
- Division of Pulmonary, Department of Medicine, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Janet S Lee
- Division of Pulmonary, Department of Medicine, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew R Rosengart
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
18
|
Fonken LK, Bedrosian TA, Zhang N, Weil ZM, DeVries AC, Nelson RJ. Dim light at night impairs recovery from global cerebral ischemia. Exp Neurol 2019; 317:100-109. [PMID: 30822422 DOI: 10.1016/j.expneurol.2019.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/12/2018] [Accepted: 02/12/2019] [Indexed: 12/13/2022]
Abstract
Nighttime lighting is one of the great conveniences of modernization; however, there is mounting evidence that inopportune light exposure can disrupt physiological and behavioral functions. Hospital patients may be particularly vulnerable to the consequences of light at night due to their compromised physiological state. Cardiac arrest/cardiopulmonary resuscitation (CA) was used to test the hypothesis in mice that exposure to dim light at night impairs central nervous system (CNS) recovery from a major pathological insult. Mice exposed to dim light at night (5 lx) had higher mortality in the week following cardiac arrest compared to mice housed in dark nights (0 lx). Neuronal damage was significantly greater in surviving mice exposed to dim light at night after CA versus those housed in dark nights. Dim light at night may have elevated neuronal damage by amplifying pro-inflammatory pathways in the CNS; Iba1 immunoreactivity (an indication of microglia activation) and pro-inflammatory cytokine expression were elevated in mice exposed to dim light at night post-CA. Furthermore, selective inhibition of IL-1β or TNFα ameliorated damage in mice exposed to dim light at night. The effects of light at night on CA outcomes were also prevented by using a wavelength of nighttime light that has minimal impact on the endogenous circadian clock, suggesting that replacing broad-spectrum nighttime light with specific circadian-inert wavelengths could be protective. Together, these data indicate that exposure to dim light at night after global cerebral ischemia increases neuroinflammation, in turn exacerbating neurological damage and potential for mortality.
Collapse
Affiliation(s)
- Laura K Fonken
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Tracy A Bedrosian
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Ning Zhang
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Zachary M Weil
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - A Courtney DeVries
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Randy J Nelson
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
19
|
González MMC. Dim Light at Night and Constant Darkness: Two Frequently Used Lighting Conditions That Jeopardize the Health and Well-being of Laboratory Rodents. Front Neurol 2018; 9:609. [PMID: 30116218 PMCID: PMC6084421 DOI: 10.3389/fneur.2018.00609] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/09/2018] [Indexed: 12/27/2022] Open
Abstract
The influence of light on mammalian physiology and behavior is due to the entrainment of circadian rhythms complemented with a direct modulation of light that would be unlikely an outcome of circadian system. In mammals, physiological and behavioral circadian rhythms are regulated by the suprachiasmatic nucleus (SCN) of the hypothalamus. This central control allows organisms to predict and anticipate environmental change, as well as to coordinate different rhythmic modalities within an individual. In adult mammals, direct retinal projections to the SCN are responsible for resetting and synchronizing physiological and behavioral rhythms to the light-dark (LD) cycle. Apart from its circadian effects, light also has direct effects on certain biological functions in such a way that the participation of the SCN would not be fundamental for this network. The objective of this review is to increase awareness, within the scientific community and commercial providers, of the fact that laboratory rodents can experience a number of adverse health and welfare outcomes attributed to commonly-used lighting conditions in animal facilities during routine husbandry and scientific procedures, widely considered as “environmentally friendly.” There is increasing evidence that exposure to dim light at night, as well as chronic constant darkness, challenges mammalian physiology and behavior resulting in disrupted circadian rhythms, neural death, a depressive-behavioral phenotype, cognitive impairment, and the deregulation of metabolic, physiological, and synaptic plasticity in both the short and long terms. The normal development and good health of laboratory rodents requires cyclical light entrainment, adapted to the solar cycle of day and night, with null light at night and safe illuminating qualities during the day. We therefore recommend increased awareness of the limited information available with regards to lighting conditions, and therefore that lighting protocols must be taken into consideration when designing experiments and duly highlighted in scientific papers. This practice will help to ensure the welfare of laboratory animals and increase the likelihood of producing reliable and reproducible results.
Collapse
Affiliation(s)
- Mónica M C González
- Sección Cronobiología y Sueño, Instituto Ferrero de Neurología y Sueño, Buenos Aires, Argentina
| |
Collapse
|
20
|
Hoffmann J, Palme R, Eccard JA. Long-term dim light during nighttime changes activity patterns and space use in experimental small mammal populations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:844-851. [PMID: 29627754 DOI: 10.1016/j.envpol.2018.03.107] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/15/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Artificial light at night (ALAN) is spreading worldwide and thereby is increasingly interfering with natural dark-light cycles. Meanwhile, effects of very low intensities of light pollution on animals have rarely been investigated. We explored the effects of low intensity ALAN over seven months in eight experimental bank vole (Myodes glareolus) populations in large grassland enclosures over winter and early breeding season, using LED garden lamps. Initial populations consisted of eight individuals (32 animals per hectare) in enclosures with or without ALAN. We found that bank voles under ALAN experienced changes in daily activity patterns and space use behavior, measured by automated radiotelemetry. There were no differences in survival and body mass, measured with live trapping, and none in levels of fecal glucocorticoid metabolites. Voles in the ALAN treatment showed higher activity at night during half moon, and had larger day ranges during new moon. Thus, even low levels of light pollution as experienced in remote areas or by sky glow can lead to changes in animal behavior and could have consequences for species interactions.
Collapse
Affiliation(s)
- Julia Hoffmann
- Animal Ecology, University of Potsdam, Maulbeerallee 1, 14469, Potsdam, Germany.
| | - Rupert Palme
- Unit of Physiology, Pathophysiology, and Experimental Endocrinology, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Jana Anja Eccard
- Animal Ecology, University of Potsdam, Maulbeerallee 1, 14469, Potsdam, Germany
| |
Collapse
|
21
|
Maroni MJ, Capri KM, Cushman AV, Monteiro De Pina IK, Chasse MH, Seggio JA. Constant light alters serum hormone levels related to thyroid function in male CD-1 mice. Chronobiol Int 2018; 35:1456-1463. [PMID: 29953263 DOI: 10.1080/07420528.2018.1488259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Disruptions to the circadian rhythm can lead to altered metabolism. Modification of thyroid function may be a reason why circadian misalignment may contribute to future metabolic disorders. We investigated whether circadian disruption through constant light (LL) can lead to variations in hormone levels associated with thyroid function. Mice were exposed to LL or a 12:12 Light:Dark (LD) cycle for 6 weeks; then glucose tolerance and thyroid hormone levels were measured at ZT 6 and ZT 18. There was day/night variation in glucose tolerance, but LL had no effect. LL reduced TSH, increased fT4, and abolished day/night variation in fT3 and leptin. These findings illustrate that LL alters thyroid-related hormones, providing evidence of a link between circadian disruption and thyroid function.
Collapse
Affiliation(s)
- Marissa J Maroni
- a Department of Biological Sciences , Bridgewater State University , Bridgewater , MA , USA
| | - Kimberly M Capri
- a Department of Biological Sciences , Bridgewater State University , Bridgewater , MA , USA
| | - Alexis V Cushman
- a Department of Biological Sciences , Bridgewater State University , Bridgewater , MA , USA
| | | | - Madison H Chasse
- a Department of Biological Sciences , Bridgewater State University , Bridgewater , MA , USA
| | - Joseph A Seggio
- a Department of Biological Sciences , Bridgewater State University , Bridgewater , MA , USA
| |
Collapse
|
22
|
Alaasam VJ, Duncan R, Casagrande S, Davies S, Sidher A, Seymoure B, Shen Y, Zhang Y, Ouyang JQ. Light at night disrupts nocturnal rest and elevates glucocorticoids at cool color temperatures. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:465-472. [PMID: 29766666 DOI: 10.1002/jez.2168] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 12/16/2022]
Abstract
Nighttime light pollution is quickly becoming a pervasive, global concern. Since the invention and proliferation of light-emitting diodes (LED), it has become common for consumers to select from a range of color temperatures of light with varying spectra. Yet, the biological impacts of these different spectra on organisms remain unclear. We tested if nighttime illumination of LEDs, at two commercially available color temperatures (3000 and 5000 K) and at ecologically relevant illumination levels affected body condition, food intake, locomotor activity, and glucocorticoid levels in zebra finches (Taeniopygia guttata). We found that individuals exposed to 5000 K light had higher rates of nighttime activity (peaking after 1 week of treatment) compared to 3000 K light and controls (no nighttime light). Birds in the 5000 K treatment group also had increased corticosterone levels from pretreatment levels compared to 3000 K and control groups but no changes in body condition or food intake. Individuals that were active during the night did not consequently decrease daytime activity. This study adds to the growing evidence that the spectrum of artificial light at night is important, and we advocate the use of nighttime lighting with warmer color temperatures of 3000 K instead of 5000 K to decrease energetic costs for avian taxa.
Collapse
Affiliation(s)
| | - Richard Duncan
- Department of Biology, University of Nevada, Reno, Nevada
| | | | - Scott Davies
- Department of Biological Sciences, Quinnipiac University, Hamden, Connecticut
| | - Abhijaat Sidher
- Department of Biology, University of Nevada, Reno, Nevada.,Department of Electrical and Biomedical Engineering, University of Nevada, Reno, Nevada
| | - Brett Seymoure
- Department of Biology, Colorado State University, Fort Collins, Colorado
| | - Yantao Shen
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, Nevada
| | - Yong Zhang
- Department of Biology, University of Nevada, Reno, Nevada
| | - Jenny Q Ouyang
- Department of Biology, University of Nevada, Reno, Nevada
| |
Collapse
|
23
|
Cleary-Gaffney M, Coogan AN. Limited evidence for affective and diurnal rhythm responses to dim light-at-night in male and female C57Bl/6 mice. Physiol Behav 2018. [PMID: 29540316 DOI: 10.1016/j.physbeh.2018.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Circadian rhythms are recurring patterns in a range of behavioural, physiological and molecular parameters that display periods of near 24 h, and are underpinned by an endogenous biological timekeeping system. Circadian clocks are increasingly recognised as being key for health. Environmental light is the key stimulus that synchronises the internal circadian system with the external time cues. There are emergent health concerns regarding increasing worldwide prevalence of electric lighting, especially man-made light-at-night, and light's impact on the circadian system may be central to these effects. A number of previous studies have demonstrated increased depression-like behaviour in various rodent experimental models exposed to dim light-at-night. In this study we set out to study the impact of dim light-at-night on circadian and affective behaviours in C57Bl/6 mice. We set out specifically to examine the impact of sex on light at night's effects, as well as the impact of housing conditions. We report minimal impact of light-at-night on circadian and affective behaviours, as measured by the tail suspension test, the forced swim test, the sucrose preference test and the elevated plus maze. Light-at-night was also not associated with an increase in body weight, but was associated with a decrease in the cell proliferation marker Ki-67 in the dentate gyrus. In summary, we conclude that experimental contextual factors, such as model species or strain, may be considerable importance in the investigation of the impact of light at night on mood-related parameters.
Collapse
Affiliation(s)
- Michael Cleary-Gaffney
- Department of Psychology, Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Andrew N Coogan
- Department of Psychology, Maynooth University, National University of Ireland, Maynooth, Ireland.
| |
Collapse
|
24
|
Li X, Li X. The Antidepressant Effect of Light Therapy from Retinal Projections. Neurosci Bull 2018; 34:359-368. [PMID: 29430586 DOI: 10.1007/s12264-018-0210-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/08/2017] [Indexed: 01/01/2023] Open
Abstract
Observations from clinical trials have frequently demonstrated that light therapy can be an effective therapy for seasonal and non-seasonal major depression. Despite the fact that light therapy is known to have several advantages over antidepressant drugs like a low cost, minimal side-effects, and fast onset of therapeutic effect, the mechanism underlying light therapy remains unclear. So far, it is known that light therapy modulates mood states and cognitive functions, involving circadian and non-circadian pathways from retinas into brain. In this review, we discuss the therapeutic effect of light on major depression and its relationship to direct retinal projections in the brain. We finally emphasize the function of the retino-raphe projection in modulating serotonin activity, which probably underlies the antidepressant effect of light therapy for depression.
Collapse
Affiliation(s)
- Xiaotao Li
- The Brain Cognition and Brain Disease Institute for Collaborative Research of SIAT at CAS and the McGovern Institute at MIT, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China. .,McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Xiang Li
- The Brain Cognition and Brain Disease Institute for Collaborative Research of SIAT at CAS and the McGovern Institute at MIT, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
25
|
Variability of surface and underwater nocturnal spectral irradiance with the presence of clouds in urban and peri-urban wetlands. PLoS One 2017; 12:e0186808. [PMID: 29117235 PMCID: PMC5695598 DOI: 10.1371/journal.pone.0186808] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 10/06/2017] [Indexed: 11/19/2022] Open
Abstract
Artificial light at night (ALAN) is an increasing phenomenon worldwide. It causes a wealth of biological and ecological effects that may eventually affect populations and ecosystems. Despite the growing concern about ALAN, little is known about the light levels species are exposed to at night, especially for wetlands and underwater habitats. We determined nocturnal irradiance in urban and peri-urban wetlands above and under water, and assessed the effect of cloud cover on the variability of ALAN across the urban gradient. Even in aquatic habitats, cloud cover could increase irradiance beyond values observed during clear full moon nights. We report a negative relationship between baseline irradiance and the increase in irradiance during overcast nights. According to this result and previous studies, we propose that the change in the variation regime of ALAN between the urban center and rural land at its periphery is a usual feature. We discuss the ecological and evolutionary implications of this spatial variation in the urban and peri-urban environment.
Collapse
|
26
|
Polidarová L, Houdek P, Sumová A. Chronic disruptions of circadian sleep regulation induce specific proinflammatory responses in the rat colon. Chronobiol Int 2017; 34:1273-1287. [DOI: 10.1080/07420528.2017.1361436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Lenka Polidarová
- Department of Neurohumoral Regulations, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Houdek
- Department of Neurohumoral Regulations, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Sumová
- Department of Neurohumoral Regulations, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
27
|
Guerrero-Vargas NN, Navarro-Espíndola R, Guzmán-Ruíz MA, Basualdo MDC, Espitia-Bautista E, López-Bago A, Lascurain R, Córdoba-Manilla C, Buijs RM, Escobar C. Circadian disruption promotes tumor growth by anabolic host metabolism; experimental evidence in a rat model. BMC Cancer 2017; 17:625. [PMID: 28874144 PMCID: PMC5585981 DOI: 10.1186/s12885-017-3636-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 08/28/2017] [Indexed: 01/01/2023] Open
Abstract
Background Light at night creates a conflicting signal to the biological clock and disrupts circadian physiology. In rodents, light at night increases the risk to develop mood disorders, overweight, disrupted energy metabolism, immune dysfunction and cancer. We hypothesized that constant light (LL) in rats may facilitate tumor growth via disrupted metabolism and increased inflammatory response in the host, inducing a propitious microenvironment for tumor cells. Methods Male Wistar rats were exposed to LL or a regular light-dark cycle (LD) for 5 weeks. Body weight gain, food consumption, triglycerides and glucose blood levels were evaluated; a glucose tolerance test was also performed. Inflammation and sickness behavior were evaluated after the administration of intravenous lipopolysaccharide. Tumors were induced by subcutaneous inoculation of glioma cells (C6). In tumor-bearing rats, the metabolic state and immune cells infiltration to the tumor was investigated by using immunohistochemistry and flow cytometry. The mRNA expression of genes involved metabolic, growth, angiogenes and inflammatory pathways was measured in the tumor microenvironment by qPCR. Tumor growth was also evaluated in animals fed with a high sugar diet. Results We found that LL induced overweight, high plasma triglycerides and glucose levels as well as reduced glucose clearance. In response to an LPS challenge, LL rats responded with higher pro-inflammatory cytokines and exacerbated sickness behavior. Tumor cell inoculation resulted in increased tumor volume in LL as compared with LD rats, associated with high blood glucose levels and decreased triglycerides levels in the host. More macrophages were recruited in the LL tumor and the microenvironment was characterized by upregulation of genes involved in lipogenesis (Acaca, Fasn, and Pparγ), glucose uptake (Glut-1), and tumor growth (Vegfα, Myc, Ir) suggesting that LL tumors rely on these processes in order to support their enhanced growth. Genes related with the inflammatory state in the tumor microenvironment were not different between LL and LD conditions. In rats fed a high caloric diet tumor growth was similar to LL conditions. Conclusions Data indicates that circadian disruption by LL provides a favorable condition for tumor growth by promoting an anabolic metabolism in the host. Electronic supplementary material The online version of this article (10.1186/s12885-017-3636-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natalí N Guerrero-Vargas
- Departamento de Anatomía, Facultad de Medicina, UNAM, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México City, Mexico
| | - Raful Navarro-Espíndola
- Departamento de Anatomía, Facultad de Medicina, UNAM, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México City, Mexico
| | - Mara A Guzmán-Ruíz
- Departamento de Anatomía, Facultad de Medicina, UNAM, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México City, Mexico.,Departamento de Medicina experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - María Del Carmen Basualdo
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, CP, Mexico
| | - Estefania Espitia-Bautista
- Departamento de Anatomía, Facultad de Medicina, UNAM, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México City, Mexico
| | - Ana López-Bago
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico City, CP, Mexico
| | - Ricardo Lascurain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico City, CP, Mexico
| | - Cinthya Córdoba-Manilla
- Departamento de Anatomía, Facultad de Medicina, UNAM, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México City, Mexico
| | - Ruud M Buijs
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, CP, Mexico
| | - Carolina Escobar
- Departamento de Anatomía, Facultad de Medicina, UNAM, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México City, Mexico.
| |
Collapse
|
28
|
Affiliation(s)
- Tracy A. Bedrosian
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Laura K. Fonken
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado 80309
| | - Randy J. Nelson
- Department of Neuroscience and Behavioral Neuroendocrinology Group, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
29
|
Jones TM, Durrant J, Michaelides EB, Green MP. Melatonin: a possible link between the presence of artificial light at night and reductions in biological fitness. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0122. [PMID: 25780235 DOI: 10.1098/rstb.2014.0122] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The mechanisms underpinning the ecological impacts of the presence of artificial night lighting remain elusive. One suspected underlying cause is that the presence of light at night (LAN) supresses nocturnal production of melatonin, a key driver of biological rhythm and a potent antioxidant with a proposed role in immune function. Here, we briefly review the evidence for melatonin as the link between LAN and changes in behaviour and physiology. We then present preliminary data supporting the potential for melatonin to act as a recovery agent mitigating the negative effects of LAN in an invertebrate. Adult crickets (Teleogryllus commodus), exposed to constant illumination, were provided with dietary melatonin (concentrations: 0, 10 or 100 µg ml(-1)) in their drinking water. We then compared survival, lifetime fecundity and, over a 4-week period, immune function (haemocyte concentration, lysozyme-like and phenoloxidase (PO) activity). Melatonin supplementation was able only partially to mitigate the detrimental effects of LAN: it did not improve survival or fecundity or PO activity, but it had a largely dose-dependent positive effect on haemocyte concentration and lysozyme-like activity. We discuss the implications of these relationships, as well as the usefulness of invertebrates as model species for future studies that explore the effects of LAN.
Collapse
Affiliation(s)
- Therésa M Jones
- Department of Zoology, The University of Melbourne, 3010 VIC, Australia
| | - Joanna Durrant
- Department of Zoology, The University of Melbourne, 3010 VIC, Australia
| | | | - Mark P Green
- Department of Zoology, The University of Melbourne, 3010 VIC, Australia
| |
Collapse
|
30
|
Russ A, Reitemeier S, Weissmann A, Gottschalk J, Einspanier A, Klenke R. Seasonal and urban effects on the endocrinology of a wild passerine. Ecol Evol 2015; 5:5698-710. [PMID: 27069618 PMCID: PMC4813110 DOI: 10.1002/ece3.1820] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 11/27/2022] Open
Abstract
In order to maximize their fitness, organisms in seasonal environments rely on external cues to optimally time their life-history stages. One of the most important zeitgeber to time reproduction is the photoperiod, but further environmental cues are assessed to fine-tune reproduction due to year-to-year variation in environmental conditions. However, in urbanized environments, the pervasive artificial light at night has altered the natural signal of light and darkness. Accordingly, artificial light at night was repeatedly shown to affect avian reproductive physiology and to advance seasonal reproduction in birds. However, these experiments were mainly conducted in the absence of further environmental cues to facilitate the investigation of the mechanisms which are still poorly understood. Here, we investigate whether the endocrine system of free-ranging European blackbirds (Turdus merula) correlates with the amount of artificial light at night along a rural to urban gradient while the birds still encounter complementary environmental cues including seasonal variation in day length and temperature. Testosterone and estrone were assessed as metabolites in fecal samples and corticosterone in blood from mist-netted blackbirds. We demonstrate that seasonal fluctuations in abiotic factors, individual conditions, but also light at night affect the reproductive and stress physiology of wild European blackbirds. Elevated artificial night light intensities were significantly positively correlated with corticosterone and negatively with female estrone levels. No effects of artificial light were found for testosterone levels. Our results suggest that female blackbirds in particular perceive even low levels of artificial light at night as a weak but chronic stressor that interacts with the hypothalamic-pituitary-gonadal axis and leads to a reduced secretion of reproductive hormones. These findings point out that the impacts of light pollution are diverse and we only slowly disentangle its multiple effects on physiology, ecology, and biodiversity.
Collapse
Affiliation(s)
- Anja Russ
- Department of Conservation BiologyHelmholtz‐Centre for Environmental Research ‐ UFZPermoserstraße 1504318LeipzigGermany
| | - Susanne Reitemeier
- Institute of Physiological ChemistryUniversity of LeipzigAn den Tierkliniken 104103LeipzigGermany
| | - Anne Weissmann
- Institute of Physiological ChemistryUniversity of LeipzigAn den Tierkliniken 104103LeipzigGermany
| | - Jutta Gottschalk
- Institute of Physiological ChemistryUniversity of LeipzigAn den Tierkliniken 104103LeipzigGermany
| | - Almuth Einspanier
- Institute of Physiological ChemistryUniversity of LeipzigAn den Tierkliniken 104103LeipzigGermany
| | - Reinhard Klenke
- Department of Conservation BiologyHelmholtz‐Centre for Environmental Research ‐ UFZPermoserstraße 1504318LeipzigGermany
| |
Collapse
|
31
|
Durrant J, Michaelides EB, Rupasinghe T, Tull D, Green MP, Jones TM. Constant illumination reduces circulating melatonin and impairs immune function in the cricket Teleogryllus commodus. PeerJ 2015; 3:e1075. [PMID: 26339535 PMCID: PMC4558066 DOI: 10.7717/peerj.1075] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/12/2015] [Indexed: 12/19/2022] Open
Abstract
Exposure to constant light has a range of negative effects on behaviour and physiology, including reduced immune function in both vertebrates and invertebrates. It is proposed that the associated suppression of melatonin (a ubiquitous hormone and powerful antioxidant) in response to the presence of light at night could be an underlying mechanistic link driving the changes to immune function. Here, we investigated the relationship between constant illumination, melatonin and immune function, using a model invertebrate species, the Australian black field cricket, Teleogryllus commodus. Crickets were reared under either a 12 h light: 12 h dark regimen or a constant 24 h light regimen. Circulating melatonin concentration and immune function (haemocyte concentration, lytic activity and phenoloxidase (PO) activity) were assessed in individual adult crickets through the analysis of haemolymph. Constant illumination reduced melatonin and had a negative impact on haemocyte concentrations and lytic activity, but its effect on PO activity was less apparent. Our data provide the first evidence, to our knowledge, of a link between exposure to constant illumination and variation in haemocyte concentration in an invertebrate model, while also highlighting the potential complexity of the immune response following exposure to constant illumination. This study provides insight into the possible negative effect of artificial night-time lighting on the physiology of invertebrates, but whether lower and potentially more ecologically relevant levels of light at night produce comparable results, as has been reported in several vertebrate taxa, remains to be tested.
Collapse
Affiliation(s)
- Joanna Durrant
- School of BioSciences, The University of Melbourne , Melbourne, Victoria , Australia
| | - Ellie B Michaelides
- School of BioSciences, The University of Melbourne , Melbourne, Victoria , Australia
| | - Thusitha Rupasinghe
- Metabolomics Australia, Bio21 Institute, The University of Melbourne , Melbourne, Victoria , Australia
| | - Dedreia Tull
- Metabolomics Australia, Bio21 Institute, The University of Melbourne , Melbourne, Victoria , Australia
| | - Mark P Green
- School of BioSciences, The University of Melbourne , Melbourne, Victoria , Australia
| | - Therésa M Jones
- School of BioSciences, The University of Melbourne , Melbourne, Victoria , Australia
| |
Collapse
|
32
|
Phillips DJ, Savenkova MI, Karatsoreos IN. Environmental disruption of the circadian clock leads to altered sleep and immune responses in mouse. Brain Behav Immun 2015; 47:14-23. [PMID: 25542734 DOI: 10.1016/j.bbi.2014.12.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/26/2014] [Accepted: 12/05/2014] [Indexed: 12/29/2022] Open
Abstract
In mammals, one of the most salient outputs of the circadian (daily) clock is the timing of the sleep-wake cycle. Modern industrialized society has led to a fundamental breakdown in the relationship between our endogenous timekeeping systems and the solar day, disrupting normal circadian rhythms. We have argued that disrupted circadian rhythms could lead to changes in allostatic load, and the capacity of organisms to respond to other environmental challenges. In this set of studies, we apply a model of circadian disruption characterized in our lab in which mice are housed in a 20h long day, with 10h of light and 10h of darkness. We explored the effects of this environmental disruption on sleep patterns, to establish if this model results in marked sleep deprivation. Given the interaction between circadian, sleep, and immune systems, we further probed if our model of circadian disruption also alters the innate immune response to peripheral bacterial endotoxin challenge. Our results demonstrate that this model of circadian disruption does not lead to marked sleep deprivation, but instead affects the timing and quality of sleep. We also show that while circadian disruption does not lead to basal changes in the immune markers we explored, the immune response is affected, both in the brain and the periphery. Together, our findings further strengthen the important role of the circadian timing system in sleep regulation and immune responses, and provide evidence that disrupting the circadian clock increases vulnerability to further environmental stressors, including immunological challenges.
Collapse
Affiliation(s)
- Derrick J Phillips
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Marina I Savenkova
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Ilia N Karatsoreos
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
33
|
Abstract
Most organisms display endogenously produced ∼ 24-hour fluctuations in physiology and behavior, termed circadian rhythms. Circadian rhythms are driven by a transcriptional-translational feedback loop that is hierarchically expressed throughout the brain and body, with the suprachiasmatic nucleus of the hypothalamus serving as the master circadian oscillator at the top of the hierarchy. Appropriate circadian regulation is important for many homeostatic functions including energy regulation. Multiple genes involved in nutrient metabolism display rhythmic oscillations, and metabolically related hormones such as glucagon, insulin, ghrelin, leptin, and corticosterone are released in a circadian fashion. Mice harboring mutations in circadian clock genes alter feeding behavior, endocrine signaling, and dietary fat absorption. Moreover, misalignment between behavioral and molecular circadian clocks can result in obesity in both rodents and humans. Importantly, circadian rhythms are most potently synchronized to the external environment by light information and exposure to light at night potentially disrupts circadian system function. Since the advent of electric lights around the turn of the 20th century, exposure to artificial and irregular light schedules has become commonplace. The increase in exposure to light at night parallels the global increase in the prevalence of obesity and metabolic disorders. In this review, we propose that exposure to light at night alters metabolic function through disruption of the circadian system. We first provide an introduction to the circadian system, with a specific emphasis on the effects of light on circadian rhythms. Next we address interactions between the circadian system and metabolism. Finally, we review current experimental and epidemiological work directly associating exposure to light at night and metabolism.
Collapse
Affiliation(s)
- Laura K Fonken
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| | | |
Collapse
|
34
|
Mice exposed to dim light at night exaggerate inflammatory responses to lipopolysaccharide. Brain Behav Immun 2013; 34:159-63. [PMID: 24012645 DOI: 10.1016/j.bbi.2013.08.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/15/2013] [Accepted: 08/27/2013] [Indexed: 12/31/2022] Open
Abstract
The mammalian circadian system regulates many physiological functions including inflammatory responses. Appropriately timed light information is essential for maintaining circadian organization. Over the past ∼120 years, urbanization and the widespread adoption of electric lights have dramatically altered lighting environments. Exposure to light at night (LAN) is pervasive in modern society and disrupts core circadian clock mechanisms. Because microglia are the resident macrophages in the brain and macrophages contain intrinsic circadian clocks, we hypothesized that chronic exposure to LAN would alter microglia cytokine expression and sickness behavior following LPS administration. Exposure to 4 weeks of dim LAN elevated inflammatory responses in mice. Mice exposed to dimly lit, as compared to dark, nights exaggerated changes in body temperature and elevated microglia pro-inflammatory cytokine expression following LPS administration. Furthermore, dLAN mice had a prolonged sickness response following the LPS challenge. Mice exposed to dark or dimly lit nights had comparable sickness behavior directly following the LPS injection; however, dLAN mice showed greater reductions in locomotor activity, increased anorectic behavior, and increased weight loss than mice maintained in dark nights 24h post-LPS injection. Overall, these data suggest that chronic exposure to even very low levels of light pollution may alter inflammatory responses. These results may have important implications for humans and other urban dwelling species that commonly experience nighttime light exposure.
Collapse
|
35
|
Fonken LK, Lieberman RA, Weil ZM, Nelson RJ. Dim light at night exaggerates weight gain and inflammation associated with a high-fat diet in male mice. Endocrinology 2013; 154:3817-25. [PMID: 23861373 DOI: 10.1210/en.2013-1121] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Elevated nighttime light exposure is associated with symptoms of metabolic syndrome. In industrialized societies, high-fat diet (HFD) and exposure to light at night (LAN) often cooccur and may contribute to the increasing obesity epidemic. Thus, we hypothesized that dim LAN (dLAN) would provoke additional and sustained body mass gain in mice on a HFD. Male mice were housed in either a standard light/dark cycle or dLAN and fed either chow or HFD. Exposure to dLAN and HFD increase weight gain, reduce glucose tolerance, and alter insulin secretion as compared with light/dark cycle and chow, respectively. The effects of dLAN and HFD appear additive, because mice exposed to dLAN that were fed HFD display the greatest increases in body mass. Exposure to both dLAN and HFD also change the timing of food intake and increase TNFα and MAC1 gene expression in white adipose tissue after 4 experimental weeks. Changes in MAC1 gene expression occur more rapidly due to HFD as compared with dLAN; after 5 days of experimental conditions, mice fed HFD already increase MAC1 gene expression in white adipose tissue. HFD also elevates microglia activation in the arcuate nucleus of the hypothalamus and hypothalamic TNFα, IL-6, and Ikbkb gene expression. Microglia activation is increased by dLAN, but only among chow-fed mice and dLAN does not affect inflammatory gene expression. These results suggest that dLAN exaggerates weight gain and peripheral inflammation associated with HFD.
Collapse
Affiliation(s)
- Laura K Fonken
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, 636 Biomedical Research Tower, 460 West 12th Avenue, Columbus, Ohio 43210.
| | | | | | | |
Collapse
|
36
|
Bedrosian TA, Weil ZM, Nelson RJ. Chronic dim light at night provokes reversible depression-like phenotype: possible role for TNF. Mol Psychiatry 2013; 18:930-6. [PMID: 22824811 DOI: 10.1038/mp.2012.96] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 06/04/2012] [Accepted: 06/12/2012] [Indexed: 11/09/2022]
Abstract
The prevalence of major depression has increased in recent decades and women are twice as likely as men to develop the disorder. Recent environmental changes almost certainly have a role in this phenomenon, but a complete set of contributors remains unspecified. Exposure to artificial light at night (LAN) has surged in prevalence during the past 50 years, coinciding with rising rates of depression. Chronic exposure to LAN is linked to increased risk of breast cancer, obesity and mood disorders, although the relationship to mood is not well characterized. In this study, we investigated the effects of chronic exposure to 5 lux LAN on depression-like behaviors in female hamsters. Using this model, we also characterized hippocampal brain-derived neurotrophic factor expression and hippocampal dendritic morphology, and investigated the reversibility of these changes 1, 2 or 4 weeks following elimination of LAN. Furthermore, we explored the mechanism of action, focusing on hippocampal proinflammatory cytokines given their dual role in synaptic plasticity and the pathogenesis of depression. Using reverse transcription-quantitative PCR, we identified a reversible increase in hippocampal tumor necrosis factor (TNF), but not interleukin-1β, mRNA expression in hamsters exposed to LAN. Direct intracerebroventricular infusion of a dominant-negative inhibitor of soluble TNF, XPro1595, prevented the development of depression-like behavior under LAN, but had no effect on dendritic spine density in the hippocampus. These results indicate a partial role for TNF in the reversible depression-like phenotype observed under chronic dim LAN. Recent environmental changes, such as LAN exposure, may warrant more attention as possible contributors to rising rates of mood disorders.
Collapse
Affiliation(s)
- T A Bedrosian
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
37
|
Dim light at night increases depressive-like responses in male C3H/HeNHsd mice. Behav Brain Res 2013; 243:74-8. [PMID: 23291153 DOI: 10.1016/j.bbr.2012.12.046] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 12/21/2012] [Accepted: 12/24/2012] [Indexed: 11/21/2022]
Abstract
Daily patterns of light exposure have become increasingly variable since the widespread adoption of electrical lighting during the 20th century. Seasonal fluctuations in light exposure, shift-work, and transmeridian travel are all associated with alterations in mood. These studies implicate fluctuations in environmental lighting in the development of depressive disorders. Here we argue that exposure to light at night (LAN) may be causally linked to depression. Male C3H/HeNHsd mice, which produce nocturnal melatonin, were housed in either a standard light/dark (LD) cycle or exposed to nightly dim (5 lux) LAN (dLAN). After four weeks in lighting conditions mice underwent behavioral testing and hippocampal tissue was collected at the termination of the study for qPCR. Here were report that mice exposed to dLAN increase depressive-like responses in both a sucrose anhedonia and forced swim test. In contrast to findings in diurnal grass rats, dLAN mice perform comparably to mice housed under dark nights in a hippocampus-dependent learning and memory task. TNFα and IL1β gene expression do not differ between groups, demonstrating that changes in these pro-inflammatory cytokines do not mediate dLAN induced depressive-like responses in mice. BDNF expression is reduced in the hippocampus of mice exposed to dLAN. These results indicate that low levels of LAN can alter mood in mice. This study along with previous work implicates LAN as a potential factor contributing to depression. Further understanding of the mechanisms through which LAN contributes to changes in mood is important for characterizing and treating depressive disorders.
Collapse
|
38
|
Fonken LK, Kitsmiller E, Smale L, Nelson RJ. Dim nighttime light impairs cognition and provokes depressive-like responses in a diurnal rodent. J Biol Rhythms 2012; 27:319-27. [PMID: 22855576 DOI: 10.1177/0748730412448324] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Circadian disruption is a common by-product of modern life. Although jet lag and shift work are well-documented challenges to circadian organization, many more subtle environmental changes cause circadian disruption. For example, frequent fluctuations in the timing of the sleep/wake schedule, as well as exposure to nighttime lighting, likely affect the circadian system. Most studies of these effects have focused on nocturnal rodents, which are very different from diurnal species with respect to their patterns of light exposure and the effects that light can have on their activity. Thus, the authors investigated the effect of nighttime light on behavior and the brain of a diurnal rodent, the Nile grass rat. Following 3 weeks of exposure to standard light/dark (LD; 14:10 light [~150 lux] /dark [0 lux]) or dim light at night (dLAN; 14:10 light [~150 lux] /dim [5 lux]), rats underwent behavioral testing, and hippocampal neurons within CA1, CA3, and the dentate gyrus (DG) were examined. Three behavioral effects of dLAN were observed: (1) decreased preference for a sucrose solution, (2) increased latency to float in a forced swim test, and (3) impaired learning and memory in the Barnes maze. Light at night also reduced dendritic length in DG and basilar CA1 dendrites. Dendritic length in the DG positively correlated with sucrose consumption in the sucrose anhedonia task. Nighttime light exposure did not disrupt the pattern of circadian locomotor activity, and all grass rats maintained a diurnal activity pattern. Together, these data suggest that exposure to dLAN can alter affective responses and impair cognition in a diurnal animal.
Collapse
Affiliation(s)
- Laura K Fonken
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Current scientific evidence suggests that the systemic immune response is affected by exposure to light. During the past century man has been exposed for the first time in evolution to light at night, as well as increasing ultraviolet radiation through depletion of the ozone layer in our atmosphere. These ecological changes have enhanced the impact of light on our systemic immune response. We will review the effect of light on the systemic immune response with particular emphasis on ocular immunity. RECENT FINDINGS Visible light is now recognized to be important in the maintenance of immune privilege within the eye; however, little is known about the mechanism through which this effect occurs. Recent studies suggest that the generation of regulatory T cells involved in immune privilege within the eye is dependent on retinoic acid formation by retinal pigment epithelial cells. Light is also important in modulation of multiple pathways including adjustment of circadian rhythm and production of vitamin D. SUMMARY Light regulates our biologic systems in many different ways. Its effect on the systemic immune response suggests that it is important in maintaining health, as well as in the induction of disease. A better understanding of the interaction of light with our biologic systems may allow new preventive measures to avoid disease and novel forms of treatment.
Collapse
|