1
|
Korostovtseva LS, Kolomeichuk SN. Circadian Factors in Stroke: A Clinician's Perspective. Cardiol Ther 2023; 12:275-295. [PMID: 37191897 DOI: 10.1007/s40119-023-00313-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/27/2023] [Indexed: 05/17/2023] Open
Abstract
Stroke remains one of the leading causes of mortality and long-term and permanent disability worldwide despite technological innovations and developments in pharmacotherapy. In the last few decades, the growing data have evidenced the role of the circadian system in brain vulnerability to damage, the development and evolution of stroke, and short-term and long-term recovery. On the other hand, the stroke itself can affect the circadian system via direct injury of specific brain structures involved in circadian regulation (i.e., hypothalamus, retinohypothalamic tracts, etc.) and impairment of endogenous regulatory mechanisms, metabolic derangement, and a neurogenic inflammatory response in acute stroke. Moreover, the disruption of circadian rhythms can occur or exacerbate as a result of exogenous factors related to hospitalization itself, the conditions in the intensive care unit and the ward (light, noise, etc.), medication (sedatives and hypnotics), and loss of external factors entraining the circadian rhythms. In the acute phase of stroke, patients demonstrate abnormal circadian variations in circadian biomarkers (melatonin, cortisol), core body temperature, and rest-activity patterns. The approaches aimed at the restoration of disrupted circadian patterns include pharmacological (melatonin supplementation) and non-medication (bright light therapy, shifting feeding schedules, etc.) interventions; however, their effects on short- and long-term recovery after stroke are not well understood.
Collapse
Affiliation(s)
- Lyudmila S Korostovtseva
- Sleep Laboratory, Research Department for Hypertension, Almazov National Medical Research Centre, 2 Akkuratov Str., St Petersburg, 197341, Russia.
| | - Sergey N Kolomeichuk
- Sleep Laboratory, Research Department for Hypertension, Almazov National Medical Research Centre, 2 Akkuratov Str., St Petersburg, 197341, Russia
- Laboratory of Genetics Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Almazov National Medical Research Centre, St Petersburg, Russia
| |
Collapse
|
2
|
Fernández-Mateos P, Cano-Barquilla P, Jiménez-Ortega V, Virto L, Pérez-Miguelsanz J, Esquifino AI. Effect of Melatonin on Redox Enzymes Daily Gene Expression in Perirenal and Subcutaneous Adipose Tissue of a Diet Induced Obesity Model. Int J Mol Sci 2023; 24:ijms24020960. [PMID: 36674472 PMCID: PMC9863119 DOI: 10.3390/ijms24020960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Increased adiposity is related to oxidative stress, inflammation and metabolic disorders. Our group has shown that melatonin totally or partially prevents the alterations that obesity causes in some neuroendocrine and inflammatory parameters indicative of oxidative stress. This study analyzes the effects of HFD on the relative gene expression of several redox balance enzymes on adult male Wistar rats subcutaneous (SAT) and perirenal adipose tissue (PRAT) and the possible preventive role of melatonin. Three experimental groups were established: control, high fat diet (HFD) and HFD plus 25 μg/mL melatonin in tap water. After 11 weeks, animals were sacrificed at 09:00 a.m. and 01:00 a.m. and PRAT and SAT were collected for selected redox enzymes qRT-PCR. Differential expression of redox enzyme genes, except for SODMn, GPx and catalase, was observed in the control group as a function of fat depot. HFD causes the disappearance of the temporal changes in the expression of the genes studied in the two fat depots analyzed. PRAT seems to be more sensitive than SAT to increased oxidative stress induced by obesity. Melatonin combined with a HFD intake, partially prevents the effects of the HFD on the gene expression of the redox enzymes. According to our results, melatonin selectively prevents changes in the relative gene expression of redox enzymes in PRAT and SAT of animals fed an HFD.
Collapse
Affiliation(s)
- Pilar Fernández-Mateos
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain
- Department of Cellular Biology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
- Correspondence: (P.F.-M.); (A.I.E.); Tel.: +34-913947256 (P.F.-M.); +34-913947189 (A.I.E.)
| | - Pilar Cano-Barquilla
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Vanesa Jiménez-Ortega
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Leire Virto
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain
- Department of Anatomy and Embryology, Faculty of Optics, Complutense University, 28037 Madrid, Spain
| | - Juliana Pérez-Miguelsanz
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Ana I. Esquifino
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
- Correspondence: (P.F.-M.); (A.I.E.); Tel.: +34-913947256 (P.F.-M.); +34-913947189 (A.I.E.)
| |
Collapse
|
3
|
Yin W, Zhang J, Guo Y, Wu Z, Diao C, Sun J. Melatonin for premenstrual syndrome: A potential remedy but not ready. Front Endocrinol (Lausanne) 2022; 13:1084249. [PMID: 36699021 PMCID: PMC9868742 DOI: 10.3389/fendo.2022.1084249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Premenstrual syndrome (PMS), a recurrent and moderate disorder that occurs during the luteal phase of the menstrual cycle and quickly resolves after menstruation, is characterized by somatic and emotional discomfort that can be severe enough to impair daily activities. Current therapeutic drugs for PMS such as selective serotonin reuptake inhibitors are not very satisfying. As a critical pineal hormone, melatonin has increasingly been suggested to modulate PMS symptoms. In this review, we update the latest progress on PMS-induced sleep disturbance, mood changes, and cognitive impairment and provide possible pathways by which melatonin attenuates these symptoms. Moreover, we focus on the role of melatonin in PMS molecular mechanisms. Herein, we show that melatonin can regulate ovarian estrogen and progesterone, of which cyclic fluctuations contribute to PMS pathogenesis. Melatonin also modulates gamma-aminobutyric acid and the brain-derived neurotrophic factor system in PMS. Interpreting the role of melatonin in PMS is not only informative to clarify PMS etiology but also instructive to melatonin and its receptor agonist application to promote female health. As a safe interaction, melatonin treatment can be effective in alleviating symptoms of PMS. However, symptoms such as sleep disturbance, depressive mood, cognitive impairment are not specific and can be easily misdiagnosed. Connections between melatonin receptor, ovarian steroid dysfunction, and PMS are not consistent among past studies. Before final conclusions are drawn, more well-organized and rigorous studies are recommended.
Collapse
Affiliation(s)
- Wei Yin
- Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Neurobiology, Shandong University, Jinan, Shandong, China
| | - Jie Zhang
- Department of Neurosurgery, Laizhou City People’s Hospital, Laizhou, Shandong, China
| | - Yao Guo
- Department of Psychiatry, Shandong Provincial Mental Health Center, Jinan, Shandong, China
| | - Zhibing Wu
- Department of Anatomy, Changzhi Medical College, Changzhi, Shanxi, China
| | - Can Diao
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jinhao Sun
- Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Neurobiology, Shandong University, Jinan, Shandong, China
- *Correspondence: Jinhao Sun,
| |
Collapse
|
4
|
Abstract
This review summarizes the available data about genetic factors which can link ischemic stroke and sleep. Sleep patterns (subjective and objective measures) are characterized by heritability and comprise up to 38-46%. According to Mendelian randomization analysis, genetic liability for short sleep duration and frequent insomnia symptoms is associated with ischemic stroke (predominantly of large artery subtype). The potential genetic links include variants of circadian genes, genes encoding components of neurotransmitter systems, common cardiovascular risk factors, as well as specific genetic factors related to certain sleep disorders.
Collapse
Affiliation(s)
- Lyudmila Korostovtseva
- Sleep Laboratory, Research Department for Hypertension, Department for Cardiology, Almazov National Medical Research Centre, 2 Akkuratov Str., Saint Petersburg, 197341, Russia.
| |
Collapse
|
5
|
A Topical Formulation of Melatoninergic Compounds Exerts Strong Hypotensive and Neuroprotective Effects in a Rat Model of Hypertensive Glaucoma. Int J Mol Sci 2020; 21:ijms21239267. [PMID: 33291737 PMCID: PMC7730513 DOI: 10.3390/ijms21239267] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 02/08/2023] Open
Abstract
Melatonin is of great importance for regulating several eye processes, including pressure homeostasis. Melatonin in combination with agomelatine has been recently reported to reduce intraocular pressure (IOP) with higher efficacy than each compound alone. Here, we used the methylcellulose (MCE) rat model of hypertensive glaucoma, an optic neuropathy characterized by the apoptotic death of retinal ganglion cells (RGCs), to evaluate the hypotensive and neuroprotective efficacy of an eye drop nanomicellar formulation containing melatonin/agomelatine. Eye tissue distribution of melatonin/agomelatine in healthy rats was evaluated by HPLC/MS/MS. In the MCE model, we assessed by tonometry the hypotensive efficacy of melatonin/agomelatine. Neuroprotection was revealed by electroretinography; by levels of inflammatory and apoptotic markers; and by RGC density. The effects of melatonin/agomelatine were compared with those of timolol (a beta blocker with prevalent hypotensive activity) or brimonidine (an alpha 2 adrenergic agonist with potential neuroprotective efficacy), two drugs commonly used to treat glaucoma. Both melatonin and agomelatine penetrate the posterior segment of the eye. In the MCE model, IOP elevation was drastically reduced by melatonin/agomelatine with higher efficacy than that of timolol or brimonidine. Concomitantly, gliosis-related inflammation and the Bax-associated apoptosis were partially prevented, thus leading to RGC survival and recovered retinal dysfunction. We suggest that topical melatoninergic compounds might be beneficial for ocular health.
Collapse
|
6
|
Wang L, Zhuo ZY, Shi WQ, Tan DX, Gao C, Tian XZ, Zhang L, Zhou GB, Zhu SE, Yun P, Liu GS. Melatonin promotes superovulation in sika deer (Cervus nippon). Int J Mol Sci 2014; 15:12107-18. [PMID: 25007067 PMCID: PMC4139832 DOI: 10.3390/ijms150712107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/19/2014] [Accepted: 06/30/2014] [Indexed: 12/31/2022] Open
Abstract
In this study, the effects of melatonin (MT) on superovulation and reproductive hormones (melatonin, follicle-stimulating hormone (FSH), luteinizing hormone (LH) and PRL) were investigated in female sika deer. Different doses (40 or 80 mg/animal) of melatonin were subcutaneously implanted into deer before the breeding season. Exogenous melatonin administration significantly elevated the serum FSH levels at the time of insemination compared with levels in control animals. During superovulation, the serum LH levels in donor sika deer reached their highest values (7.1 ± 2.04 ng/mL) at the point of insemination, compared with the baseline levels (4.98 ± 0.07 ng/mL) in control animals. This high level of LH was sustained until the day of embryo recovery. In contrast, the serum levels of PRL in the 80 mg of melatonin-treated group were significantly lower than those of control deer. The average number of corpora lutea in melatonin-treated deer was significantly higher than that of the control (p < 0.05). The average number of embryos in the deer treated with 40 mg of melatonin was higher than that of the control; however, this increase did not reach significant difference (p > 0.05), which may be related to the relatively small sample size. In addition, embryonic development in melatonin-treated groups was delayed.
Collapse
Affiliation(s)
- Liang Wang
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China.
| | - Zhi-Yong Zhuo
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China.
| | - Wen-Qing Shi
- Animal Husbandry Station of Beijing, Beijing 100101, China.
| | - Dun-Xian Tan
- Department of Cellular & Structural Biology, the UT Health Science Center, San Antonio, TX 78229, USA.
| | - Chao Gao
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China.
| | - Xiu-Zhi Tian
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China.
| | - Lu Zhang
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China.
| | - Guang-Bin Zhou
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University (Chengdu Campus), Chengdu 611130, China.
| | - Shi-En Zhu
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China.
| | - Peng Yun
- Animal Husbandry Station of Beijing, Beijing 100101, China.
| | - Guo-Shi Liu
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China.
| |
Collapse
|
7
|
Cardinali DP, Vidal MF, Vigo DE. Agomelatine: Its Role in the Management of Major Depressive Disorder. ACTA ACUST UNITED AC 2012. [DOI: 10.4137/cmpsy.s7989] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Circadian rhythm abnormalities, as shown by sleep/wake cycle disturbances, constitute one the most prevalent signs of depressive illness; advances or delays in the circadian phase are documented in patients with major depressive disorder (MDD), bipolar disorder, and seasonal affective disorder (SAD). The disturbances in the amplitude and phase of rhythm in melatonin secretion that occur in patients with depression resemble those seen in chronobiological disorders, thus suggesting a link between disturbed melatonin secretion and depressed mood. Based on this, agomelatine, the first MT1/MT2 melatonergic agonist displaying also 5-HT2C serotonergic antagonism, has been introduced as an antidepressant. Agomelatine has been shown to be effective in several animal models of depression and anxiety and it has beneficial effects in patients with MDD, bipolar disorder, or SAD. Among agomelatine's characteristics are a rapid onset of action and a pronounced effectiveness for correcting circadian rhythm abnormalities and improving the sleep/wake cycle. Agomelatine also improves the 3 functional dimensions of depression—emotional, cognitive, and social—thus aiding in the full recovery of patients to a normal life.
Collapse
Affiliation(s)
- Daniel P. Cardinali
- Department of Teaching and Research, Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - María F. Vidal
- Department of Teaching and Research, Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Daniel E. Vigo
- Department of Teaching and Research, Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| |
Collapse
|