Sánchez-Solís CN, Cuevas-Romero E, Munoz A, Cervantes-Rodríguez M, Rodríguez-Antolín J, Nicolás-Toledo L. Morphometric changes and AQP2 expression in kidneys of young male rats exposed to chronic stress and a high-sucrose diet.
Biomed Pharmacother 2018;
105:1098-1105. [PMID:
30021346 DOI:
10.1016/j.biopha.2018.06.086]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE
Consumption of a cafeteria-like diet and chronic stress have a negative impact on kidney function and morphology in adult rats. However, the interaction between chronic restraint stress and high-sucrose diet on renal morphology in young rats is unknown. A high-sucrose diet does not modify serum glucose levels but reduces serum corticosterone levels in stressed young rats, in this way it is confusing a possible potentiate or protector effect of this diet on kidney damage induced by stress.
METHODS
Wistar male rats at 4 weeks of age were randomly assigned into 4 groups: control (C), stressed (St), high-sucrose diet (S30), and chronic restraint stress plus a 30% sucrose diet (St + S30). Rats were fed with a standard chow and tap water (C group) or 30% sucrose diluted in water (S30 group). Chronic restraint stress consisted of 1-h daily placement into a plastic cylinder, 5 days per week, and for 4 weeks.
RESULTS
Stressed rats exhibited a low number of corpuscles, glomeruli, high number of mesangial cells, major deposition of mesangial matrix and aquaporin-2 protein (AQP-2) expression, and low creatinine levels. Meanwhile, high-sucrose diet ameliorated AQP-2 expression and avoided the reduction of creatinine levels induced by chronic stress. The combination of stress and high-sucrose diet maintained similar effects on the kidney as stress alone, although it induced a greater reduction in the area of proximal tubules.
CONCLUSIONS
Our results show that both chronic stress and a high-sucrose diet induce histological changes, but chronic stress may generate an accelerated glomerular hypertrophy associated with functional changes before puberty.
Collapse